

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

DIVISIÓN DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE INGENIERÍA EN COMPUTACIÓN

PRACTICAS

LABORATORIO DE MICROCOMPUTADORAS

BASADAS EN LA PLATAFORMA RASPBERRY PI

RUBÉN ANAYA GARCÍA MOISES MELENDEZ REYES ANTONIO SALVA CALLEJA JOSE ANTONIO ARREDONDO GARZA ANGELICA QUIÑONES JUAREZ DIANA CRUZ HERNANDEZ LUIS SERGIO DURÁN ARENAS ROMÁN OSORIO COMPARAN ALBERTO TEMPLOS CARBAJAL

> CIUDAD UNIVERSITARIA PE108223

Prácticas de Laboratorio de Microcomputadoras

Este material y la infraestructura generada fueron obtenidos a través de apoyo de DGAPA al proyecto PAPIME PE108223 "Prácticas de Laboratorio de microcomputadoras basadas en las plataformas Raspberry Pi"

Introducción

Se ha diseñado este material para uso en el laboratorio de microcomputadoras, con el objetivo de reforzar los conocimientos adquiridos en la teoría de la materia "Microcomputadoras", se realizarán un conjunto de 12 prácticas. En cada una de ellas se presenta información introductoria, sugerida como inducción al tema a tratar; así como las actividades a propuestas y las complementarias que reforzarán la práctica.

El marco teórico, así como las actividades podrán ser aplicables a cualesquiera de las versiones de Raspberry Pi existentes actualmente. Nos enfocaremos en las versiones más empleadas como Raspberry Pi 3, Raspberry Pi 4, y Raspberry Pi 5 así como de la Raspberry Pi Pico, los ejercicios aquí propuestos inducen y llevan al estudiante a un mejor entendimiento de estos dispositivos y a un mayor aprovechamiento de estos.

Se realizarán dos prácticas que nos permitirá aprender la programación en ensamblador de los procesadores ARM, empleando directamente la Raspberry Pi, se empleará el Entorno de Desarrollo Integrado (Code::Blocks) para la edición, simulación y ejecución de los ejercicios requeridos. En estas prácticas se familiarizará con el conjunto de instrucciones y los diferentes modos de direccionamiento disponibles en estas arquitecturas.

A partir de la práctica tres y subsecuentes será empleada la versión Raspberry Pi Pico, se ha adoptado la programación en Python, desarrollada para uso en plataformas con microcontroladores, conocida como Micropython. En esta práctica se realizarán actividades emplearán los pines GPIO en la modalidad de salida.

La práctica cuatro, usará programación de los GPIO en las configuraciones de entrada y salida.

En la práctica cinco se controlarán motores de corriente directa, motores a pasos y servomotores, además se entenderá la importancia del uso de drivers de potencia.

La práctica seis mostrará al alumno las funcionalidades de convertidor analógico-digital dentro de los recursos del microcontrolador, además de ampliar las posibilidades de aplicación de este recurso y se realizarán acciones de control por medio de la modulación de ancho de pulso conocida como PWM.

En la práctica siete realizará la comunicación serie en la modalidad asíncrona, el estudiante controlará acciones desde y hacia la Raspberry Pi Pico, de manera alámbrica o inalámbrica a través de la UART.

La práctica ocho estudiará la comunicación serie síncrona a través del protocolo SPI.

En la práctica nueve se realizarán programas en los cuales se experimentará con dispositivos que sean controlados por medio de un mínimo de terminales; conocido como One Wire.

La práctica diez se ha enfocado en el aprendizaje de la comunicación serie bajo el protocolo I2C, con el cual se aprenderá la versatilidad de este tipo de comunicación.

Por último, las practicas 11 y 12 tendrán como objetivo el aprendizaje de funciones avanzadas de la plataforma Raspberry Pi Pico; la primera de ellas fomentará el control de sistemas por medio de

interrupciones y la programación de hilos(threads). En la última práctica, hará uso de la comunicación WiFi, conectarse a la red y adquirir la habilidad de realizar control de tipo IOT.

Además de la realización de las practicas, el estudiante deberá entregar un proyecto final; en el que plasme todo lo aprendido en el curso, este será el entregable como evidencia requerida para los procesos de acreditación.

Al concluir las prácticas y el proyecto final, el estudiante habrá experimentado con todos y cada uno de los recursos contenidos en una microcomputadora y un microcontrolador, empleando plataformas de última generación que a nivel nacional e internacional son utilizados en el diseño y construcción de sistemas digitales, aplicables en una gran variedad de áreas de la tecnología y para efectos didácticos: en la academia.

El manual contiene las siguientes:

Practicas

	Contenido
Práctica No. 1	Introducción de las arquitecturas ARM empleando Raspberry Pi.
Práctica No. 2	Programación en ensamblador; direccionamiento indirecto.
Práctica No. 3	Introducción a la plataforma Raspberry Pi Pico, GPIO como salida; programación en Micropython.
Práctica No. 4	GPIO como Entrada/Salida.
Práctica No. 5	Control de actuadores con GPIO.
Práctica No. 6	Convertidor Analógico Digital, control PWM.
Práctica No. 7	Comunicación Serie Asíncrona UART.
Práctica No. 8	Comunicación Serie Síncrona SPI.
Practica No. 9	Comunicación One Wire.
Práctica No. 10	Comunicación Serie Síncrona I2C.
Practica No. 11	Programación de Interrupciones y Threads.
Práctica No. 12	Uso y aplicaciones WiFi.
Evaluación	Proyecto Final.

Las actividades propuestas en este manual, buscan contribuir con los criterios de desempeño correspondientes a:

- A2-CD3 (Desarrollo de proyectos que satisfacen las necesidades especificadas).
- A3-CD3 (presenta conclusiones con base en su formación ingenieril).
- A4-CD1(Elabora trabajos y reportes técnicos relacionados con sus asignaturas).

Cumpliendo con el objetivo general de la asignatura de nombre: "Microcomputadoras":

Objetivo.

El alumno aprenderá y aplicará los conocimientos de la teoría y funcionamiento de los microprocesadores y su interconexión con diferentes circuitos periféricos para la construcción y funcionamiento de microcomputadoras. Diseñará y construirá aplicaciones utilizando microprocesadores y sus periféricos para diferentes sistemas, simulando aplicaciones industriales en tiempo real, así como aplicaciones científicas.

Cubriendo en su totalidad el temario del curso; el cual consta de:

Temario.

- 1. Conceptos básicos
- 2. Conjunto de instrucciones
- 3. Modos de direccionamiento
- 4. Señales de control y diseño de un sistema con microprocesadores
- 5. Periféricos e interfaces con microprocesadores
- 6. Técnicas de diseño de sistemas con microprocesadores
- 7. Características generales de microprocesadores de 16 y 32 bits

Laboratorio de Microcomputadoras Practica No. 1 Introducción a las arquitecturas ARM y Raspberry Pi

Objetivo. Aprender la estructura de los procesadores con arquitectura ARM, utilizar la plataforma Raspberry Pi y los entornos para programar y desarrollar algoritmos con las instrucciones en lenguaje ensamblador, controlar directamente los recursos del microprocesador; editar, compilar, ensamblar, simular y ejecutar programas en Raspberry Pi.

1. Introducción

Las plataformas Raspberry Pi están diseñadas con diferentes versiones de procesadores con arquitecturas ARM; en todos los casos es aplicable a su marco teórico de esta tecnología.

a. Registros

Tiene 16 registros de 32 bits identificados como R0, R1, R2, ... R15 y un registro de banderas; los registros R0 a R12 son registros de propósito general; mientras que R13, R14 y R15 son de propósito específico.

31	0
R0	
R1	
R2	
R3	
R4	
R5	
R6	
R7	
R8	
R9	
R10	
R11	
R12	

Registros de propósito general:

Registros de propósito específico:

Registro de Banderas Estado/Control CPSR

Figura 1-1. Registros ARM

b. Mapa de Memoria

Las arquitecturas ARM tienen un bus de direcciones de 32 bits; por lo que podrán direccionar hasta 4 GB de 8 bits de espacio en memoria.

Figura 1-2. Mapa de memoria

c. Conjunto de instrucciones

A continuación, se muestra un extracto del conjunto de instrucciones; para mayor información, consultar la documentación oficial.

Mnemonic	Instruction	Sintaxis	Action
ADC	Add with carry	ADC{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Rn + Op2 + Carry
ADD	Add	ADD{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Rn + Op2
AND	AND	AND{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Rn AND Op2
В	Branch	B{L}{ <cond>} <target_address></target_address></cond>	R15 = address
BIC	Bit Clear	BIC{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Rn AND NOT Op2
BL	Branch with Link	B{L}{ <cond>} <target_address></target_address></cond>	R14 = R15, R15 := address
вх	Branch and Exchange	BX{ <cond>} <rm></rm></cond>	R15 = Rn, T bit = Rn[0]
CMN	Compare Negative	CMN{ <cond>} <rn>, <shifter_operand></shifter_operand></rn></cond>	CPSR flags = Rn + Op2
СМР	Compare	CMP{ <cond>} <rn>, <shifter_operand></shifter_operand></rn></cond>	CPSR flags = Rn - Op2
EOR	Exclusive OR	EOR{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = (Rn AND NOT Op2) OR (op2 AND NOT Rn)
LDM	Load multiple registers	LDM{ <cond>}<addressing_mode> <rn>{!}, <registers></registers></rn></addressing_mode></cond>	Stack manipulation (Pop)
LDR	Load register from memory	LDR{ <cond>} <rd>, <addressing_mode></addressing_mode></rd></cond>	Rd = (address)
MCR	Move CPU register to coprocessor register	MOV{ <cond>}{S} <rd>, <shifter_operand></shifter_operand></rd></cond>	cRn = rRn { <op>cRm}</op>
MLA	Multiply Accumulate	MRS{ <cond>} <rd>, CPSR</rd></cond>	Rd = (Rm * Rs) + Rn
MOV	Move register or constant	MRS{ <cond>} <rd>, SPSR</rd></cond>	Rd = Op2
MRC	Move from coprocessor register to CPU register	MSR{ <cond>} CPSR_<fields>, #<immediate></immediate></fields></cond>	Rn = cRn { <op>cRm}</op>
MRS	Move PSR status/flags to register	MSR{ <cond>} CPSR_<fields>, <rm></rm></fields></cond>	Rn = PSR
MSR	Move register to PSR status/flags	MSR{ <cond>} SPSR_<fields>, #<immediate></immediate></fields></cond>	PSR = Rm
MUL	Multiply	MUL{ <cond>}{S} <rd>, <rm>, <rs></rs></rm></rd></cond>	Rd = Rm * Rs
MVN	Move negative register	MVN{ <cond>}{S} <rd>, <shifter_operand></shifter_operand></rd></cond>	Rd = 0xFFFFFFF EOR Op2
ORR	OR	ORR{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Rn OR Op2
RSB	Reverse Subtract	RSB{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Op2 - Rn
RSC	Reverse Subtract with Carry	RSC{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Op2- Rn - 1 + Carry
SBC	Subtract with Carry	SBC{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Rn - Op2 - 1 + Carry
STM	Store Multiple	STM{ <cond>}<addressing_mode> <rn>{!}, <registers></registers></rn></addressing_mode></cond>	Stack manipulation (Push)
STR	Store register to memory	STR{ <cond>} <rd>, <addressing_mode></addressing_mode></rd></cond>	<address> = Rd</address>
SUB	Subtract	SUB{ <cond>}{S} <rd>, <rn>, <shifter_operand></shifter_operand></rn></rd></cond>	Rd = Rn - Op2
SWI	Software Interrupt	SWI{ <cond>} <immed_24></immed_24></cond>	OS call
SWP	Swap register with memory	SWP{ <cond>} <rd>, <rm>, [<rn>]</rn></rm></rd></cond>	Rd = [Rn], [Rn] := Rm
TEQ	Test bitwise equality	TEQ{ <cond>} <rn>, <shifter_operand></shifter_operand></rn></cond>	CPSR flags = Rn EOR Op2
TST	Test bits	TST{ <cond>} <rn>, <shifter_operand></shifter_operand></rn></cond>	CPSR flags = Rn AND Op2

Prácticas de Laboratorio de Microcomputadoras

																					i.					
	31 30 29 28	27 26 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
Procesamiento de datos turno inmediato	cond [1]	000		opcode		S		Rn		Rd			Cantidad de can			carr	mbio Cambio 0			0		Rm	1			
Instrucciones varias	cond [1]	000		10	ΧХ		0	Х	X	X	Х	Х	Х	Х	Х	X	Х	Х	X	X	Х	Х	0	Х	X	XX
Desplazamiento del registro de procesamiento de datos [2]	cond [1]	000		орс	ode		S		Rn		Rd				Rs				0 Cambio 1			1		Rm	1	
Instrucciones varias	cond [1]	000		10	ΧХ		0	Х	X	X	Х	Х	Х	Х	Х	X	Х	Х	X	0	Х	Х	1	Х	X	ХХ
Multiplicación, carga/guardado extra	cond [1]	000	X	Х	Х	X	Х	Х	X	X	Х	Х	Х	Х	Х	X	Х	Х	X	1	Х	Х	1	Х	X	ХХ
Procesamiento inmediato de datos [2]	cond [1]	001		орс	ode		S		F	Rn			R	d			Gi	ro				Ir	imed	liato		
Instrucción indefinida [3]	cond [1]	001	0	0	Х	0	0	Х	X	X	Х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	X	X	Х	X	ХХ
Movimiento inmediato al registro de estado	cond [1]	001	1	0	R	1	0		Más	scara			SBO				Gi	ro			Inmediato					
Cargar/guardar offset inmediato	cond [1]	010	Р	U	В	W	L		F	Rn			R	d						Inmediato						
Cargar/guardar registro de offset	cond [1]	011	Р	U	В	W	L		F	Rn			R	d		Car	ntida	d de	cam	cambio Giro 0 Rm			1			
Instrucción indefinida	cond [1]	011	X	Х	Х	X	Х	Х	X	X	Х	X	Х	Х	Х	X	Х	Х	X	Х	Х	Х	1	Х	X	XX
Instrucción indefinida [4,7]	1111	0 X X	X	Х	Х	X	Х	Х	X	X	Х	X	Х	Х	Х	X	Х	Х	X	X	Х	Х	Х	Х	X	XX
Carga/guardado múltiple	cond [1]	100	Р	U	S	W	L		F	Rn		Lista de registro														
Instrucción indefinida [4]	1111	100	X	Х	Х	X	Х	Х	X	X	Х	X	Х	Х	Х	X	Х	Х	X	X	Х	Х	Х	Х	X	XX
Rama y rama con enlace	cond [1]	101	L									Offset de 24 bits														
Rama y rama con enlace y cambio a Thumb [4] 1111 101 H					Offs	et d	e 24 k	oits																		
Carga/guardado de coprocesador y transferencia de doble registro	cond [5]	110	Р	U	Ν	W	L		F	Rn			CI	Rd			cp_i	num				Offs	set d	e 8 b	its	
Procesamiento de datos del coprocesador	cond [5]	1110			орс	ode1		CRn			CRd			cp_num				opcode2				0	С	Rm		
Transferencia de registro del coprocesador cond [5]		1110		o	ocod	e1	L		С	Rn			R	d			cp_i	num			орсо	de3		1	С	Rm
Interrupción de software	cond [5]	1111												N	úme	ro SV	//									
Instrucción indefinida [4]	1111	1111		Х	Х	X	X	Х	X	X	Х	X	Х	Х	Х	X	Х	Х	X	Х	X	X	X	Х	X	XX

Tabla	1-2.	Códiao	de	las	instr	uccione	es
i abia		Courgo	40	100		40010110	~~

Por facilidad, las instrucciones se pueden dividir en los siguientes grupos:

C.1. **PROCESAMIENTO DE DATOS:**

- a. Mover datos: MOV, MVN, MOVT.
- b. Operaciones aritméticas: ADC, ADD, RSB, RSC, SBC, SUB, MLA, MUL.
- c. Operaciones lógicas: AND, ORR, EOR, BIC.
- d. Comparaciones: CMN, CMP, TEQ, TST.
- e. Control de flujo
 - i. Incondicionales: B, BL, BX, BLX.
 - ii. Condicionales: ver tabla

En general, para este grupo de instrucciones, la sintaxis es:

MNEMONICO {<cond>} {S} <Rd>, <Rn>, <shifter_operand>

MNEMONICO	@	Instrucción en ensamblador.
{ <cond>}</cond>	@	Es opcional, aplica en caso de ejecutar con la condición especificada.
{S}	@	Opcional en caso de requerir actualizar las banderas.
< R d>	@	Registro destino de la instrucción.
< <i>Rn</i> >	@	Primer operador.
<shifter_operand></shifter_operand>	@	Segundo operador; puede ser: un dato inmediato, el contenido de un registro o el corrimiento lógico/aritmético de un dato/registro.

Prácticas de Laboratorio de Microcomputadoras

Operador de desplazamiento (< <i>shifter_operand></i>)	Sintaxis
Inmediato	#inmediato
Registro	Rm
Corrimiento lógico a la izquierda a través de un valor inmediato	Rm, LSL #shift_inm
Corrimiento lógico a la izquierda a través de un registro	Rm, LSL Rs
Corrimiento lógico a la derecha a través de un valor inmediato	Rm, LSR #shift_inm
Corrimiento lógico a la derecha a través de un registro	Rm, LSR Rs
Corrimiento aritmético a la derecha a través de un valor inmediato	Rm, ASR #shift_inm
Corrimiento aritmético a la derecha a través de un valor inmediato	Rm, ASR Rs
Rotación a la derecha a través de un valor inmediato	Rm, ROR #shift_inm
Rotación a la derecha a través de un valor inmediato	Rm, ROR Rs

Tabla 1-3. Parámetros de desplazamiento

Ejemplos:

MOV R1, #0XAA	@ <i>R</i> 1 = 0X000000AA
MOV R0, #0X1234	@ <i>R</i> 1 = 0X00001234
MOVT R0 ,#0XABCD	@ <i>R</i> 1 = 0XABCD****
MOV R2, R3	@ R2 = R3
MOV R0, R2, LSL #2	@R0 << 2
MOV R0, R1, ASR #3	@R0 >> 3
MOV R0, R2, ROR #2	@R0 = R2 rotación de 2 veces a la derecha de R2
ADD R1, R2, #8	@R1 = R2 + 8
ADDS R1, #0X10	@R1 = R2 + 0X10; actualiza el registro de banderas CPSR
ADC R1, R2 #0XFF	@R1 = R2 + 0XFF + C
ADD R0, R2, R1, LSL #2	$@R0 = R2 + (R1^{*}4)$
RSB R2, R0, R0, LSL #3	@ <i>R</i> 2 = 7 * <i>R</i> 0

C.2. TRANSFERENCIA DE DATOS ENTRE REGISTROS Y MEMORIA:

- i. Carga: *LDR, LDRB, LDRH.*
- ii. Almacenamiento: STR, STRB, STRH.

C.3. CARGA

LDR RDESTINO, [Memoria_32] @ Carga el contenido de la memoria al RDESTINO; es común que la dirección a acceder esté especificada previamente en un registro.

Ejemplo:

LDR R0, =DATO1	@	Carga en R0 la dirección de DATO1.
LDR R1, [R0]	@	Carga en R1 el contenido de la dirección de memoria indicada por R0
LDR R2,0x12345678	@	Carga el contenido de la dirección 0X12345678 a R2.

C.4. ALMACENAMIENTO

STR R <i>FUENTE</i> , <i>Memoria</i> _32	@	Almacena el contenido del RFUENTE en memoria; es
		común que la dirección a acceder esté especificada
		previamente en un registro.

LDR R0, =DATO1	@	Carga en R0 la dirección de DATO1.
STR R1, [R0]	@	Almacena el contenido de R1 en la dirección de memoria indicada por
		R0.
QTD D2 0v12245679	\bigcirc	Almacana al contonido do P2 on la dirección do momoria 0X12245678

STR R2,0x12345678 @ Almacena el contenido de R2 en la dirección de memoria 0X12345678.

Para los dos últimos ejemplos tanto para *LDR* como *STR*, se requiere tener identificado la dirección a acceder.

C.5. CONTROL DE FLUJO

- a. Condicionales: B, BL, BX, BLX.
- b. Incondicionales: *BEQ, BNE, BCS, BCC, BMI, BPL, BHI, BLE, BGE, BLT, BLE, etc.*

C.6. INSTRUCCIONES CONDICIONALES.

Sintaxis

B {L} {<cond>} <target_addres>

Donde:

B {L} { <cond>} <target_ac< th=""><th>a a dress> a</th><th> Instrucción de brinco. Es puede ser BL, Es opcional, aplica en c especificada. Dirección de salto; se esp </th><th>aso de ejecutar con la condición pecifica con una etiqueta.</th></target_ac<></cond>	a a dress> a	 Instrucción de brinco. Es puede ser BL, Es opcional, aplica en c especificada. Dirección de salto; se esp 	aso de ejecutar con la condición pecifica con una etiqueta.
Code	Suffix	Flags	Meaning
0000	EQ	Z set	equal
0001	NE	Z clear	not equal
0010	CS	C set	unsigned higher or same
0011	СС	C clear	unsigned lower
0100	MI	N set	negative
0101	PL	N clear	positive or zero
0110	VS	V set	overflow
0111	VC	V clear	no overflow
1000	н	C set and Z clear	unsigned higher
1001	LS	C clear or Z set	unsigned lower or same
1010	GE	N equals V	greater or equal
1011	LT	N not equal to V	less than
1100	GT	Z clear AND (N equals V)	greater than
1101	LE	Z set OR (N not equal to V)	less than or equal
1110	AL	(ignored)	always

Tabla 1-4. Instrucciones condicionales

Ejemplos:

INICIO:	MOV R0,#1	
	B INICIO	@ Incondicional
	CMP R0,#7 BEQ IGUAL B DIF	@ Condicional
IGUAL: DIF.	B IGUAL B DIF	@ <i>Incondicional</i> @Incondicional

Llamados a subrutinas

	BL SUB_RUT	@Llamado a subrutina
SUB_RUT:	MOV R0,2	@ Inicio de subrutina
	MOV PC,LR	@Retorno de subrutina

d. Formato del programa en ensamblador.

El programa deberá integrar:

- **Instrucciones o mnemónicos**; especificadas por el conjunto de instrucciones ARM; pueden ser escritas en mayúsculas o minúsculas de manera libre.
- **Directivas**; configuraciones o definiciones dentro del programa, soportadas por el ensamblador.
- **Etiquetas**; referencias a instrucciones o direcciones de memoria, terminar con : (dos puntos), ejemplo: etiqueta1:; deben conservar el formato original (mayúsculas o minúsculas).
- **Comentarios**; se inicia con @, requerida para documentación del programa.

Debe delimitar dos bloques del programa:

Área de código o programa; indicada por la directiva .text.
Al inicio del área de código (.text), usar la directiva global para declarar el inicio del mismo _start o main en Code::Blocks.
Agregar la etiqueta de inicio del código; _start, o main en Code::Blocks.
Área de datos; especificada por la directiva .data.

	.text .global start	@Inicio de código de programa @Define start como global para ser visible por el linker
_start:	5 –	@Punto de entrada para el linker
	Instrucción 1	
ETIQUETA1:	Instrucción 2	
etiqueta n:	Instrucción n	
	.data	@inicio de área reservada para declarar datos
DATO1:	.word 0	@ Reserva espacio para DATO1 y asigna el valor 0

Como puede consultar en la documentación adicional, el formato del programa empleando Code::Blocks, cambia _*start* por *main*, dado que se compila el programa usando un proyecto en C.

main:	.text .global main	 @Inicio de código de programa @Define _start como global para ser visible por el linker @Punto de entrada para el linker
	Instrucción 1	
ETIQUETA1:	Instrucción 2	
etiqueta n:	Instrucción n	
DATO1:	.data .word 0	@inicio de área reservada para declarar datos @ Reserva espacio para DATO1 y asigna el valor 0

2. Requerimientos

2.1. Software.

• GNU GCC Compiler

2.2. Editor (opciones).

- Code::Blocks
- Vi
- Nano
- Geanny
- CPUlator

2.3. Hardware (opciones).

- Raspberry Pi 3+
- Raspberry Pi 4
- Raspberry Pi 400
- Raspberry Pi 5
- Simular en línea CPUlator

3. Desarrollo

Realizar las actividades solicitadas.

Actividad 1. Escribir, comentar, ensamblar, ligar y ejecutar el siguiente programa.

```
.global _start
_start: mov r1, #0x19
mov r2, #53
add r3, r2,r1
mov r0,r3
mov r7,#1
svc 0
```

Figura 1-3. Código de ejemplo; actividad 1

Actividad 2. Seguir el procedimiento indicado en el manual de aplicaciones, escribir, comentar y ensamblar el siguiente programa:

.text
.global _start
_start: mov r0,#5
mov r1,#0x01
subs r3,r0,r1
beq igual
bne diferente
igual: mov r0,#1
ldr r1,=texto1
mov r2,#30
mov r7,#4
svc 0
b fin
diferente: mov r0,#1
ldr r1,=texto2
mov r2,#33
mov r7,#4
svc 0
fin: mov r0,r3
mov r7,#1
svc Ø
.data
texto1: .ascii "Datos iguales resultado = "
texto2: .ascii "Datos diferentes resultado = "

Figura 1-4. Código de ejemplo; actividad 2

Actividad 3. Empleando el IDE Code::Block, seleccionar 10 instrucciones para comprobar el funcionamiento de ellas; agregar las directivas correspondientes.

a. Reportar el resultado esperado y el obtenido.

Recordar cambiar _start por main como inicio del llamado al programa.

.global main main:

Figura 1-5. Modificación Code::Blocks

Actividad 4. Tomando como base el programa de la actividad 1, para que obtenga el promedio de dos números de 8 bits; utilizar Code::Blocks para todo el proceso.

$$Promedio = \frac{DATO1 + DATO2}{2}$$

Actividad 5. Emplear el IDE Code::Block, escribir, comentar, compilar y ejecutar el siguiente programa.

	.text
	.global main
main:	mov R0,#0
	mov r1,#9
	mov r2,#0
loop1:	add r0,r0,#1
	cmp r1,r0
	bne loop1
loop2:	add r0,r0,#-1
	cmp r2,r0
	beq loop1
	b loop2

Figura 1-6. Código de ejemplo; actividad 5

Actividad 6. Realizar un programa que inicie activando el bit menos significativo de un registro y recorra de posición hacia el bit más significativo (solo un bit estará activado); usar el IDE Code:Blocks.

31	30	2	1	0
0	0	 0	0	1
0	0	 0	1	0
1	1	 :	I	:
0	1	 0	0	0
1	0	 0	0	0

Figura 1-7. Secuencia actividad 6

Actividad 7. Realizar un programa que realice la suma de dos números de 32 bits y almacene el resultado en memoria empleando las direcciones que considere el resultado del acarreo en caso de existir.

DATO1_32_BITS + DATO2_32_BITS ESTADO ACARREO RESULTADO_32BITS

Actividad 8. Realizar un programa que realice la suma de dos números de 64 bits y almacene el resultado en memoria empleando las direcciones que considere el resultado del acarreo en caso de existir.

+	DATO1_64_BITS_H DATO2_64_BITS_H	DATO1_64_BITS_L DATO2_64_BITS_L
ESTADO DEL ACARREO	RESULTADO_64_BITS_H	RESULTADO_64_BITS_L

Actividad 9. Realizar un programa que obtenga el factorial de un número de 8 bits.

Resultado = n!

Actividad 10. Implementar con instrucciones en lenguaje ensamblador la sentencia:

int j = 0;

for $(i = 0; i \le 50; i++) \{j = j+2:\}$

Laboratorio de Microcomputadoras Practica No. 2 Programación en ensamblador, direccionamiento indirecto

Objetivo. Programar las variantes del modo de direccionamiento indirecto existentes para los procesadores ARM.

1. Introducción

El acceso a memoria se realiza utilizando las instrucciones de carga y almacenamiento; la forma general de estas instrucciones es.

LDR Reg_destino, [Dir_Men_32]

STR Reg_fuente, [Dir_Mem_32]

Donde:

Reg_destino:	Será el registro donde será almacenado el dato requeridor; este podrá ser:	
	La dirección base de la ubicación del dato.El contenido de memoria.	
Reg_fuente:	El registro cuyo contenido será transferido a memoria.	
[Dir_Mem_32]:	Dirección de memoria en el que se lee o escribe el dato.	

Ejemplo:

LDR R0, =DATO	@	Carga en R0 la dirección asignada a la variable dato.
LDR R0,=abcd1234	@	Carga en R0 el valor 0xabcd1234; podrá ser usado como una constante que especifica la dirección de memoria.
LDR R0, [R0]	@	Carga el contenido de la dirección de memoria indicada por R0 en R0.
STR R1, [R0]	@	Transfiere el contenido el registro R1 a la dirección de memoria indicada por R0.

Al usar *LDR* y *STR*, se podrá operar con la memoria que se indica con el valor contenido en el registro base, así como un desplazamiento.

El desplazamiento puede ser incrementado o decrementado de acuerdo a tres posibles parámetros y actualizar el registro base antes o después de obtener la dirección de memoria a operar.

Formato general:

LDR Registro_destino, [Registro_base, Opciones_de_desplazamiento]

STR Registro_fuente, [Registro_base, Opciones_de_desplazamiento]

Donde:

Registro_destino:	Registro en el que será almacenado el dato de memoria.			
Registro_fuente:	Registro cuyo contenido será tra	nsferido a memoria.		
Registro_base:	Contiene el valor considerado co cargado previamente.	mo base (apuntador); debe ser		
Opciones_de_desplazamiento:	Es el desplazamiento que se aplicará a la dirección base; puede ser:			
	Sin desplazamiento:	LDR R0, [R1]		
	Desplazamiento con valor inmediato:	LDR R0, [R1, #4]		
	Desplazamiento a través de un registro:	LDR R0, [R1, R2]		
	Desplazamiento de un registro:	LDR, [R1, R2 LSL #2]		

a. Actualización del registro base.

Considerando la forma de operación de este tipo de direccionamiento, es posible actualizar el valor del registro base previo o posterior a la ejecución de la instrucción.

a.1. Auto indexado (pre indexado).

LDR R0, [R1, #4]! @ Carga al registro R0 el contenido de la dirección de memoria conformada por *[R1 + 4]*; el registro será actualizado con: *R1 = R1 + 4*.

a.2. Post indexado.

LDR R0, R1, #4	@	Carga al registro R0 el contenido de la dirección de memoria conformada
		por [R1]; posteriormente el registro será actualizado con: R1 = R1 + 4.

2. Requerimientos

2.1 Software.

• GNU GCC Compiler

2.2 Editor (opciones).

- Code::Blocks
- Vi
- Nano
- Geanny
- CPUlator

2.3 Hardware (opciones).

- Raspberry Pi 3+
- Raspberry Pi 4
- Raspberry Pi 400
- Raspberry Pi 5
- Simular en línea CPUlator

3 Desarrollo.

Realizar las actividades solicitadas; ocupará el IDE Code::Blocks.

Actividad 1. Escribir, comentar, compilar y comprobar el funcionamiento del siguiente programa.

```
.data

i: .skip 64

.text

.global main

main:

ldr r1,=i

mov r2,#0

loop: cmp r2,#16

beq fin

add r3,r1,r2,LSL #2

str r2,[r3]

add r2,r2,#1

b loop
```

fin: b fin

Figura 2-1. Código de ejemplo: actividad 1

Actividad 2. Modificar el programa de la actividad 1, para usar el direccionamiento indexado de su preferencia con el doble de datos.

Actividad 3. Realizar un programa almacene en memoria un arreglo de datos de 32 bits con 16 elementos; una vez transferidos, realizar la copia en sentido inverso en otro arreglo.

A = [dato1, dato2, dato3, dato4,, dato15, dato16] @Original

B = [dato16, dato15, dato14, dato13,, dato2, dato1] @Copia

Actividad 4. Realizar un programa que forme un arreglo de 20 elementos, con el siguiente criterio:

A = [i, 2i, 4i, 8i, 16i,ni]

- a. Enviar a memoria cada uno de ellos;
- b. Sumar y almacenar en memoria el resultado.

Actividad 5. Realizar un programa que multiplique dos matrices de 2x2; los datos podrán ser de 8 bits.

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} I & J \\ K & L \end{bmatrix}$$

Actividad 6. Realizar un programa que encuentre el número con valor mayor en un arreglo de 20 elementos que serán almacenados en memoria; para lo cual:

- a. Indicar cual fue el valor mayor.
- b. Ubicar la dirección donde se encontró este número.
- c. Usar las direcciones que requiera para cumplir lo solicitado.

Actividad 7. Realizar un programa que ordene de manera ascendente un arreglo de 32 elementos de 32 bits; deberá:

- a. Mantener el arreglo original.
- b. Generar otro arreglo con el ordenamiento del original.

Arreglo original.

A[0]	A[1]	A[2]		A[30]	A[31]
------	------	------	--	-------	-------

Arreglo ordenado.

Menor A[x]	Mayor A[y]

Laboratorio de Microcomputadoras Practica No. 3 Introducción a la plataforma Raspberry Pi Pico GPIO de Salida; programación en Micropython

Objetivo. Conocer los recursos de la plataforma con el microcontrolador RP2040 contenida en la plataforma Raspberry Pi Pico; desarrollar algoritmos mediante la programación en Micropyton utilizando el IDE Thonny para generar salidas a través de las terminales GPIO.

1. Introducción

La fundación Raspberry Pi, ha lanzado plataformas en la versión microcontrolador, en la actualidad están disponibles: Raspberry Pi Pico y Raspberry Pi Pico 2, en ambas casos dispone de versiones con conexión WiFi denotadas como W, así como con pines (headers) soldados o por soldar; entre sus características se encuentran:

Versión	Microcontrolador	Características
Raspberry Pi Pico	RP2040	Dual Core ARM Cortex M0+@133MHz 254 KB de SRAM y 2MB de FLASH USB 1.1, 26 GPIO con multifunción, 3 ADC de 12bits, 2 SPI, 2 I2C, 2 UART, 24 PWM, 2 TIMERS, 1 sensor de temperatura integrado.
Raspberry Pi Pico W	RP2040	Dual Core ARM Cortex M0+@133MHz Wireless (802,11n) @2.4 GH z WPA 3, Bluetooth 5.2 (clásico y BLE) 254 KB de SRAM y 2MB de FLASH USB 1.1, 26 GPIO con multifunción, 3 ADC de 12bits, 2 SPI, 2 I2C, 2 UART, 24 PWM, 2 TIMERS, 1 sensor de temperatura integrado.
Raspberry Pi Pico 2	RP2350	Dual Cortex-M33 @150MHz 520 KB de SRAM y 4MB de FLASH USB 1.1, 26 GPIO con multifunción, 3 ADC de 12bits, 2 SPI, 2 I2C, 2 UART, 24 PWM, 2 TIMERS, 1 sensor de temperatura integrado.
Raspberry Pi Pico 2W	RP2350	Dual Cortex-M33 @150MHz Wireless (802,11n) @2.4 GH z WPA 3, Bluetooth 5.2 (clásico y BLE) 520 KB de SRAM y 4MB de FLASH USB 1.1, 26 GPIO con multifunción, 3 ADC de 12bits, 2 SPI, 2 I2C, 2 UART, 24 PWM, 2 TIMERS, 1 sensor de temperatura integrado.

Tabla 3-1. Raspberry Pi Pico/Pico W

Para realizar la practica y las subsecuentes, se utilizará el entorno THONNY y la programación en Micropython. Previamente le ha sido instalado el intérprete de Micropython a la plataforma Raspberry Pi Pico; para mayor información, consultar la documentación oficial o apéndice respectivo.

Conectar usando el cable USB entre la tarjeta y la PC; al ejecutar THONNY, mostrará la siguiente pantalla:

Figura 3-1. IDE Thonny; conexión exitosa

En caso de haber seguido las instrucciones dadas, aparecerá la conexión exitosa indicando el reconocimiento de la plataforma, el puerto COM habilitado (será diferente para cada caso); la consola queda lista para escribir instrucciones.

En caso de haber omitido conectar Raspberry Pi Pico, una vez conectado bastará con presional el icono rojo (*Detener/reiniciar*) y se restablecerá la conexión, desplegando la pantalla de la figura 3-1.

Figura 3-2. IDE Thonny; conexión fallida

2. Requerimientos

2.1 9	Software.	
	•	Micropython
2.2 [Editor.	
	٠	Thonny
2.3. +	Hardware.	
	• • •	Raspberry Pi Pico o Raspberry Pi Pico W Plataforma embebida 1 para Raspberry Pi Pico 8 Leds 8 Resistencias de 220 Ω

La asignación corresponde a las terminales GPIO0 a GPIO7 de acuerdo a la tabla 3-2; el circuito implementado se muestra en el esquemático de la figura 3-3.

GPIO0	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7
LED	LED	LED	LED	LED	LED	LED	LED
VERDE	AMARILLO	ROJO	AZUL	AZUL	ROJO	AMARILLO	VERDE

Tabla 3-2. Asignación de GPIO

Figura 3-3. Esquemático del módulo de salida GPIO0 a GPIO7

3. Desarrollo

Realizar las actividades solicitadas, mostrar el funcionamiento de cada una de ellas.

Actividad 1.

a. Usando el IDE Thonny; escribir el siguiente código y comentar cada instrucción:

```
import machine
import utime
LED = machine.Pin(0,machine.Pin.OUT)
while True:
    LED.value(1)
    utime.sleep_ms(500)
    LED.value(0)
    utime.sleep_ms(500)
```

Figura 3-4. Código de prueba

Del circuito de la figura 3-3, se muestra solo la salida correspondiente a GPIO0, quedando de la siguiente manera:

Figura 3-5. Circuito actividad 1

El programa queda de la siguiente manera; cuidar la indentación correspondiente a la programación en Python.

Th Thonny - ≤sin nombre> @ 9:21

Figura 3-6. Código Micropython en Thonny

b. Guardar el programa en la computadora.

c. Ejecutar el programa

Ubicarse en el programa recién guardado y ejecutar presionando el icono Ejecutar el scrip actual.

Thonny - C:\Users\ranay\Desktop\Curso 2025-1\Eje_Py\Practica1\p1.py @ 9:21 Fichero Editar Visualizar Ejecutar Herramientas Ayuda

Figura 3-8. Ejecución

d. Detener ejecución

Para detener la ejecución del programa, presionar el icono 📕 stop.

TARE Country Touries circular restationals regions	
eniciar back end (Ctrl+F2)	Asistenta
<pre>import machine import utime LED = machine.Pin(0,machine.Pin.OUT) while True: LED.value(1) utime.sleep_ms(500) LED.value(0) utime.sleep_ms(500)</pre>	
Consola	
>>> %Run -c \$EDITOR_CONTENT MFY: soft reboot	
	MicroPython (Raspberry Pi Pico) + Board CDC @ COM41

Figura 3-9. Detener ejecución

El IDE y la Raspberry Pi Pico, quedarán listos para recibir nuevos comandos.

211 A.S		
1.py '	Asistent	e
1 import machine	·	
2 import utime		
3 and the sea as the second		
<pre>4 LED = machine.Pin(0,machine.Pin.OUT)</pre>		
5 while True:		
<pre>6 LED.value(1)</pre>		
7 utime.sleep_ms(500)		
B LED.value(0)		
<pre>9 utime.sleep_ms(500)</pre>		
	м У	
nola :	* *	
neda >	;	
nach. - anon-e-sectron_correct	÷	
noda S manon - session_secretor	~	
neda Y mont e poetror_ourrent NFY: soft reboot	×	
neda - mour - peopron_correct MPY: soft reboot. Traceback (most recent call lawt):	÷	
nola: - enon program.com.com. PV: soft reboot raceback (most recent call last): Pile "strdno", lice 7, in <module> program.com.com.com.com.com.com.com.com.com.co</module>		
nada - mont - popuror_porrew MPY: soft reboot traceback (mont recent call last): File "sections", line 7, in <module> (sypcoardisterrupt:</module>	······································	
sola" FY: soft report rabeback (most recent call last): File %:stdin>*, lie 7, in <module> synbardInterrupt: PY: soft reboot</module>		
PV: soft reboot raceback (most recent cell last): File *.stdin'*, lice 7, in <module> syncardisterrup: PY: soft reboot croPython v1.19.1 on 2022-06-18; Raspberry</module>	Pi Pico with RP2048	
<pre>mail = sector Free sector free sector = sector free sector = sector</pre>	Pi Pico with RP2048	

Figura 3-10. Detener ejecución y en espera

Actividad 2. Realizar las modificaciones necesarias para que los tiempos sean más pequeños y más grandes que el código anterior.

Actividad 3. Realizar las modificaciones requeridas para que el efecto se muestre en otro GPIO (podrá usar GPIO1 al GPIO 7); usar retardos a conveniencia.

Actividad 4. Realizar un programa que genere las siguientes salidas:

GPIO2	GPIO3	
1	0	@85 ms entre estados
0	1	

Tabla 3-3. Control; actividad 4

Actividad 5. Realizar un programa que prenda y apague las GPIO0 al GPIO7; el circuito corresponde en su totalidad al mostrado en la figura 3.3, usar los retardos a elección.

GPI00	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1

Tabla 3-4. Control; actividad 5

Actividad 6. Repetir la acción anterior 10 veces; mantener apagado 2 segundos y repetir acción.

00	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7		1
	0	0	0	0	0	0	0		$ \rangle$
	1	1	1	1	1	1	1	10	$\backslash \land$
								repeticiones	
	0	0	0	0	0	0	0	(200 ms)	
	1	1	1	1	1	1	1		
	0	0	0	0	0	0	0	2 segundos	

Tabla 3-5. Control; actividad 6

Actividad 7. Usando los GPIO0 al GPIO7; realizar un programa que genere la siguiente secuencia; usar retardos de 100ms.

GPI00	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7	1
1	0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1
0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	l.

Tabla 3-6. Control; actividad 7

Actividad 8. Usando los GPIO0 al GPIO7; realizar un programa que genere la siguiente secuencia; usar retardos de 100ms.

GPI00	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7
1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0
1	1	1	1	1	0	0	0
1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1

Tabla 3-7. Control; actividad 8

Actividad 9. Usando los GPIO0 al GPIO7; realizar un programa que genere un contador de 8 bits de forma ascendente; usar retardos de 50ms.

GPI00	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
•	•	•	•	•	•	•	
1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1

Actividad 10. Usando las salidas correspondientes a los colores de los leds; realizar un programa que controle el funcionamiento de dos semáforos, de acuerdo a la siguiente tabla.

Estado	Salida	Requerimiento
1	V1, R2	5 segundos
2	V1, R2	5 intermitentes de 200 ms, en V1
3	A1, R2	3 segundos
4	R1, V2	5 segundos
5	R1, V2	5 intermitentes de 200 ms, en V2
6	R1, A2	3 segundos

Tabla 3-9. Control; actividad 10

Laboratorio de Microcomputadoras Practica No. 4 GPIO como entrada y salida

Objetivo. Realizar control de acciones mediante las terminales de Raspberry Pi Pico por medio de las funciones GPIO en la modalidad de entrada y salida.

1. Introducción

Las 26 terminales disponibles en Raspberry Pi Pico, asignados como GPIO0 a GPIO28, pueden se utilizadas como entrada o salida, bastará con la definición respectiva; así mismo cuando son utilizados push button, es posible habilitar resistencias internas para permitir reconocer flancos; estas resistencias pueden habilitarse como pull up o pull down.

Figura 4-1. Configuración de interruptores y push button

En micropython, la creación del objeto será:

2. Requerimientos

2.1. Software.

	Micropython	
2.2. Editor.		
	Thonny	

2.3. Hardware.

•	Raspberry Pi Pico o Raspberry Pi Pico W
•	Plataforma embebida 1 para Raspberry Pi Pico
•	8 Leds
•	8 Resistencias de 220 Ω
•	3 Dip switch (3)
•	Resistencias de 1 KΩ
•	2 push button
•	1 zumbador

Distribución de terminales.

	GPIO 8 GPIO9)9 GF	GPIO10 GPI011			GPIO		
	SW1_1	SW1_	_2 SW1_3		PUSH BUTTON		PUSH BUTTON		
					PULL_UP		PULL_DOWN		
	(a)								
GPIC	00 G	PIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7	GP
LEC)	ED	LED	LED	LED	LED	LED	LED	BU
VERD	DE AM/	ARILLO	ROJO	AZUL	AZUL	ROJO	AMARILLO	VERDE	AC

(b)

Tabla 4-1. Asignación de entradas (a) y salidas (b)
El circuito se muestra en la figura 4-2.

Figura 4-2. Esquemático entradas y salidas

3. Desarrollo.

Realizar las actividades solicitadas.

Actividad 1. Escribir el programa de la figura 4.4, comentar cada línea de código, reportar que hace y ejecutarlo; el circuito a emplear es el siguiente:

Figura 4-3. Entrada digital usando un interruptor

```
from machine import Pin
import time
sw1_1 = Pin(8 ,Pin.IN)
while True:
    if sw1_1.value() == 1:
        print("Interruptor cerrado, '1'")
        time.sleep(0.5)
    else:
        print("Interruptor abierto, '0'")
        time.sleep(0.5)
```

Figura 4-4. Código de prueba; actividad 1

Actividad 2. Realizar las modificaciones necesarias para que genere las acciones mostradas en la figura 4-5.

Figura 4-5. Esquemático y tabla de la actividad 2

Actividad 3. Escribir el programa de la figura 4-6, comentar cada línea de código, describir que hace y ejecutarlo; en el reporte agregar la tabla de control.

Figura 4-6. Circuito y código de prueba; actividad 3

Actividad 4. Usando el push button S1, tal como se ha mencionado previamente está conectado para operar en la configuración *PULL_UP*; modificar el estado de la GPIO4, GPIO5, GPIO6 y GPIO7 de acuerdo a la entrada indicada en la tabla 4.2.

Figura 4-7. Esquemático; actividad 4

Entrada					Salidas	
GPIO11	GPIO4	GPIO5	GPIO6	GPI07	GPIO22	Consola de Thonny
S1	LED4	LED5	LED6	LED7	ZUMBADOR	
'1'	0	0	0	0	0	Push button S1 liberado, '0'
						Salidas en bajo
·0'	1	1	1	1	1	Push button S1 presionado, '0'
						Salidas en alto

Tabla 4-2. Control GPIO4, GPIO5, GPIO6, GPIO7 a través de S1 (Pull_Up)

Actividad 5. Realizar el programa que genere las acciones solicitadas en la tabla 4-3; el circuito utilizado corresponde al indicado en la figura 4-2.

		Entra	adas					(Salida	S			
	GPIO								GPIO	1			
12	11	10	9	8	7	6	5	4	3	2	1	0	22
S 2	S1	SW1_1	SW1_2	SW1_3	LED	LED	LED	LED	LED	LED	LED	LED	BUZZ
0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	1	1	1	1	1	1	1	1	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	0
0	1	0	1	1	0	1	0	1	0	1	0	1	0
0	1	1	0	0	1	0	0	0	0	0	0	0	0
					0	1	0	0	0	0	0	0	0
					•	•	•	••	•	•	•	••	0
					0	0	0	0	0	0	0	1	
0	1	1	0	1	0	0	0	0	0	0	0	1	0
					0	0	0	0	0	0	1	0	0
					•	·.	·.	•.	•.	•.	·.	•.	0
				0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	1	0	0	0	0	0	0	0	0
					0	1	0	0	0	0	0	0	0
					·.	·. 0	•	•	•	·. 0	·. 0	·. 1	·. 0
					0	0	0	0	0	0	1	1	0
					·.		·	·	·			0	0
					1		0	0	0			·	1
0	1	1	1	1	1	0	0	0	0	0	0	1	0
Ū	•		-	•	0	1	Ő	Ő	Ő	0	1	0 0	0
					0	0	1	0	0	1	0	0	0
					0	0	0	1	1	0	0	0	0
					0	0	1	0	0	1	0	0	0
					0	1	0	0	0	0	1	0	0
					1	0	0	0	0	0	0	1	1
0	0	1	1	1		C	Contad	or asce	endent	e 0 – 9)		0
						(GF	2103, G	PIO4,	GPIO	5, GPIC	D6)		
1	1	1	1	1		С	ontado	or desc	enden	te 0 –	9		0
						(GF	2103, G	PIO4,	GPIO	5, GPIC	D6)		
1	0	1	1	1			No	otas m	usicale	es			1

Tabla 4-3. Acciones de control

Laboratorio de Microcomputadoras Practica No. 5 Control de actuadores con GPIO

Objetivo. Reforzará las habilidades para programar y configurar las funciones GPIO para controlar motores de corriente directa, motores de pasos y servomotores a través del microcontrolador Raspberry Pi Pico. Estudiar la importancia de los amplificadores de potencia.

1. Introducción

Entre los actuadores más empleados se encuentran:

- a. Motores de corriente directa
- b. Motores a pasos
- c. Servomotores

En cualquiera de los anteriores se genera un campo magnético producido por la circulación de corriente por sus devanados creando fuerzas de atracción y repulsión.

Un microcontrolador no otorga la corriente requerida para producir el movimiento de rotación en los motores, por lo que se hace indispensable el uso de un amplificador de corriente, que puede ser desde un solo transistor o un arreglo de cuatro transistores o contar con un driver de potencia disponible como el L2393, L298, TB6612, entre otros; la mayoría de ellos funcionando de manera parecida.

Motores de Corriente Directa

Para la práctica se emplea el driver L293, que tiene el siguiente encapsulado:

	Terminal	Función
ENABLE1 1 16 Vss		
	ENABLE1, ENABLE2	Habilitadores (Izq, Der)
	INPUT1,INPUT2,	Señales de control
	INPUT3,INPUT4	
	OUTPUT1, OUTPUT2,	Salidas, conexión a motores
GND 5 - 12 GND	OUTPUT3,UOUTUT4	
	GND	0 Volts
	VSS	5 Volts
	VS	Tensión del motor, puede ser desde 0.2 V
Vs 8 9 ENABLE2		a 32 V

Figura 5-1. Driver L293

Motores a pasos

Existen dos tipos de motores a pasos, los unipolares y los bipolares.

Figura 5-2. Motores a pasos

Para los motores bipolares se emplea regularmente dos puentes H para controlarlos, en este caso el L293D, mientras que los motores unipolares se controla cada bobina de manera independiente; es recomendable el empleo del driver ULN2003A.

ULN2003A

Figura 5-3. Driver UNL2003

El control de paso unipolares se realiza mediante tres técnicas:

- Pasos completos
- Medio paso
- Oleada

La técnica recomendada en esta práctica es la de pasos completos; que se describe en la figura 5-4.

Figura 5-4. Secuencia de pasos completos para motores unipolares

Servo motores

El servo motor contiene en su encapsulado los mecanismos, que le periten funcionar sin requerir elementos externos; integra el sistema de control que permiten colocar en la posición deseada, el driver de potencia que amplifica la corriente del microcontrolador y el sistema de reducción en base de engranes para incrementar el torque.

Figura 5-5. Descripción de servomotor

Como se puede ver en la figura 5-6, tiene un cable con tres terminales:

Terminal Café (1) 0 Volts Roja (2) 5 Volts Naranja (3) Señal de control PWM

Para controlar la posición del cursor se ingresa un pulso en la terminal de entrada al servomotor, debe generar la señal PWM con periodo de 20 ms; esta señal debe modular el pulso en alto para que se encuentre en un tiempo comprendido entre 0.5 mS a 2.5 ms. La posición de 0° a 180°, como se muestra a continuación.

Figura 5-7. Pulsos para control de servomotor.

Material a utilizar para la práctica:

Figura 5-8. Moto-reductor, motor a pasos y servomotor

2. Requerimientos

2.1. Software.	
	Micropython
2.2. Editor.	
	• Thonny
2.3. Hardware.	
	 Raspberry Pi Pico o Raspberry Pi Pico W Plataforma embebida 1 para Raspberry Pi Pico 1 L293D 1 ULN2003 1 Servomotor 2 Motores de CD 1 Motor a pasos

Distribución de terminales.

Motores de corriente directa

	Motor 1			Motor 2	
GPIO0	GPIO1	GPIO20	GPIO2	GPIO3	GPIO19
DIR1_M1	DIR2_M1	EN_M1	DIR1_M2	DIR2_M2	EN_M2

Motor a pasos

GPIO7	GPIO6	GPIO5	GPIO5
BOBINA A	BOBINA B	BOBINA C	BOBINA D

Servo Motor

Interruptores

GPIO 8	GPIO9	GPIO10	GPI011	GPIO12
SW1_1	SW1_2	SW1_3	PUSH BUTTON	PUSH BUTTON
			PULL_UP	PULL_DOWN

Tabla 5-1. Asignación de GPIO; practica 5

Prácticas de Laboratorio de Microcomputadoras

Figura 5-9. Módulo de actuadores

3. Desarrollo

Realizar las actividades solicitadas.

Actividad 1. De acuerdo a la distribución indicada en el circuito de la figura 5-10; realizar las acciones de control indicadas en la tabla 5-2. Conectar la fuente externa con 5V.

Figura 5-10. Control de motores de corriente directa

Entradas			Acci	Acciones			
SW1_1	SW1_2	SW1_3	MOTOR 1	MOTOR 2			
GPIO10	GPIO9	GPI08	GPIO0 – GPIO1-GPIO20	GPI02 – GPI03-GPI019			
0	0	0	PARO	PARO			
0	0	1	GIRA HORARIO	PARO			
0	1	0	PARO	GIRA HORARIO			
0	1	1	GIRA HORARIO	GIRA HORARIO			
1	0	0	GIRA ANTIHORARIO	GIRA HORARIO			
1	0	1	GIRA HORARIO	GIRA ANTIHORARIO			
1	1	0	GIRA ANTIHORARIO	GIRA ANTIHORARIO			
1	1	1	PARO	PARO			

Tabla 5-2. Controlador; actividad 1

Actividad 2. De acuerdo a la distribución indicada en el circuito de la figura 5-11; realizar las acciones de control indicadas en la tabla 5-3, considerar la secuencia indicada en la figura 5-4. Conectar la fuente externa con 5V.

Figura 5-11. Esquemático; actividad 2

	Entradas	;	Acciones
SW1_1 GPIO10	SW1_2 <i>GPI09</i>	SW1_3 GPI08	Motor a pasos GPIO7 – GPIO6-GPIO5 – GPIO4
0	0	0	PARO
0	0	1	GIRA HORARIO
0	1	0	GIRA SENTIDO ANTIHORARIO
0	1	1	GIRA 90° SENTIDO HORARIO cada 2 seg
1	0	0	GIRA 180º SENTIDO ANTIHORARIO cada 3 seg
1	0	1	GIRA 360 ^o SENTIDO HORARIO cada 4 seg *
1	1	0	GIRA 5 REVOLUCIONES SENTIDO HORARIO *
1	1	1	GIRAR 10 REVOLUCIONES SENTIDO ANTIHORARIO *

Tabla 5-2. Controlador; actividad 2

* Para los tres últimos casos, cada que se concluya una revolución en el motor a pasos, activar el Zumbador conectado en el GPIO22 durante 300 ms. **Actividad 3**. De acuerdo a la distribución indicada en el circuito de la figura 5-12; realizar las acciones de control indicadas en la tabla 5-4, considerar la información indicada en la figura 5-7. Conectar la fuente externa con 5V.

Figura 5-12. Esquemático control del servomotor

			Entradas		Acciones
S2	S1	SW1_1	SW1_2	SW1_3	SERVOMOTOR
GPIO12	GPIO11	GPIO10	GPIO9	GPI08	GPIO21
0	1	0	0	0	PARO
0	1	0	0	1	SERVO A 0°
0	1	0	1	0	SERVO A 45º
0	1	1	0	0	SERVO A 90º
0	0	0	0	0	SERVO A 135º
1	1	0	0	0	SERVO A 180º

Tabla 5-3. Controlador; actividad 3

Actividad 4. Realizar un programa, de manera que controle la posición del servo de forma automática, iniciando en la posición de 0° hasta 180° y viceversa.

Laboratorio de Microcomputadoras Practica No. 6 Convertidor Analógico Digital, control PWM

Objetivo. Conocer el funcionamiento del ADC (convertidor analógico digital) para realizar aplicaciones que requieran procesar señales en el mundo continuo, convertir señales provenientes de sensores; aprender el funcionamiento del control PWM.

1 Introducción

a. Convertidor Analógico Digital.

El convertidor AD se encarga de convertir una señal continua a una discreta; mediante técnicas de discretización; entre las más conocidas están las de aproximaciones sucesivas.

Raspberry Pi Pico dispone al usuario de 3 terminales para ingresar señales analógicas, designadas como ADC0, ADC1 y ADC2, ubicados como función alterna en los GPIO26, GPIO27 y GPIO28 respectivamente; además del canal interno referenciado como ADC4, el cual está asignado para un sensor de temperatura interno. La resolución del convertidor es de 12 bits; el método utilizado en Micropython genera un resultado de 16 bits. La tensión de entrada deberá estar entre 0 y 3.3 Volts.

Los requerimientos para la realización de la práctica se muestran en el siguiente diagrama:

Figura 6-1. Circuito esquemático; practica 6

Dispositivo analógico							
Potenciómetro	Foto-resistencia	TMP 36	Sensor Temp. interno				
ADC0	ADC1	ADC2	ADC4				
Canal							

Tabla 6-1. Asignación de terminales a entradas analógicas

Los recursos de software requeridos para uso del convertidor AD son:

from machine import ADC	#	Importar la clase ADC del módulo machine
canal = ADC (GPIO)	#	Crear un objeto de la clase ADC de nombre canal, ubicado en el pin GPIO indicado; este podría ser: 26, 27, 28 o 29, también es reconocido: ADC0, ADC1, ADC2 o ADC4, o en su defecto como: 0, 1, 2 o 4; de manera indistinta.
valor = canal.read_u16()	#	Utiliza el método read_u16() para obtener el resultado de la conversión A/D del canal previamente definido, a la variable valor; el resultado será en formato de 16 bits (0 – 65535).

b. Modulación de Ancho de Pulso PWM.

El módulo se encarga de generar el control de modulación de ancho de pulso conocido como PWM; este consiste en la generación de un tren de pulsos con periodo constante y lo que varia es el tiempo de la señal en alto y bajo, obteniendo un ciclo de trabajo variable D (duty cycle). La técnica PWM es muy utilizada en diversos procesos, se controla el flujo de corriente que circulará a través de un dispositivo, con lo que se considerará un promedio de tensión presente en un instante dado; es ampliamente empleado en control de motores para implementar algoritmos de tipo PID, difusos, redes neuronales, algoritmos genéticos, inteligencia artificial, entre los más difundidos.

La Raspberry Pico tiene 8 canales disponibles para la función PWM; es posible asignar a cualquier GPIO deseado.

Figura 6-2. Control PWM

Los recursos de software requeridos para uso del control PWM son:

from machine import PWM	#	Importar la clase PWM del módulo machine	
pwm1 = PWM (Pin(#GPIO))	#	Crear un objeto de la clase PWM , ubicado en el pin GPIO indicado (0 – 28).	
pwm1.freq(valor)	#	Configura el valor de la frecuencia deseada PWM.	
pwm1.duty_u16(duty)	#	Define el ciclo de trabajo; el duty podrá estar entre o y 65535.	

2 Requerimientos

2.1. Software.

	Micropython	
2.2. Editor.		
	Thonny	

2.3. Hardware.

•	Raspberry Pi Pico o Raspberry Pi Pico W
•	Plataforma embebida 1 para Raspberry Pi Pico
•	Sensor de temperatura interno
•	Potenciómetro 10 KΩ
•	Foto-resistencia
•	Sensor de temperatura TMP36

3 Desarrollo.

Realizar las actividades solicitadas.

Actividad 1. Comentar el siguiente programa, e indicar que hace:

```
from machine import ADC, Pin
import time
Sensor = ADC(4)
while True:
    Valor = Sensor.read_u16()*(3.3/65535)
    Temp = 27-(Valor-0.706)/0.001721
    print(Temp)
```

Figura 6.3. Código de prueba

Actividad 2. Realizar un programa que despliegue en la consola de Thonny el resultado de la conversión y el voltaje generado por el potenciómetro; actualizar cada segundo.

Figura 6-4. Circuito y ejecución; actividad 2

Actividad 3. Empleando el divisor de voltaje generado por la foto-resistencia; tomar la lectura de voltaje, registrar el máximo y mínimo obtenido, fijar un valor de referencia. Mientras la lectura es menor a la referencia, mantenga en bajo el GPIO7 y cuando sobrepase el valor configurado lo ponga en alto.

Figura 6-5. Circuito de foto-resistencia; actividad 3

Actividad 4. Realizar un programa que muestre el valor de temperatura tanto en °C como °F, en la consola de Thonny del sensor interno y del sensor TMP36; indicando cual de ellos tiene valor mayor al otro.

Figura 6-6. Circuito sensor TMP36 y sensor interno; actividad 4

Actividad 5. Escribir el siguiente programa, comentar e indicar que hace:

```
from machine import Pin, PWM
import time
pwm=PWM(Pin(1))
pwm.freq(1000)
while True:
   for duty in range(0, 65535,500):
       pwm.duty_u16(duty)
       time.sleep(0.05)
   pwm.duty_u16(0)
   time.sleep(2)
```


Actividad 6. Modificar el programa para que incremente y decremente de manera automática el valor de PWM en la terminal GPIO0 y refleje el valor inverso en el pin GPIO1.

Figura 6-8. Circuito y oscilograma requerido; actividad 6

Actividad 7. Realizar las modificaciones necesarias para realizar el control anterior pero ahora a través de la selal analógica proveniente del potenciómetro.

Figura 6.9. Control PWM por medio de entrada analógica; actividad 7

Laboratorio de Microcomputadoras Practica No. 7 Comunicación Serie Asíncrona UART

Objetivo. Aprender el funcionamiento de la comunicación serial en la modalidad asíncrona para la transferencia de información entre diferentes dispositivos por medios alámbricos e inalámbricos.

1. Introducción

La comunicación serie asíncrona se establece entre un dispositivo fuente y un destino, utilizando dos líneas, de tipo unidireccional o bidireccional; se debe configurar la razón de transferencia (*Baud*), en ambos dispositivos. Las microcomputadoras y microcontroladores disponen de un módulo encargado de este formato de comunicación, conocidos como **UART o USART**.

La comunicación asíncrona requiere de solo dos vías:

UART				
Тх	Transmisor	Línea de transmisión de datos.		
Rx	Receptor	Línea de recepción de datos.		

En caso de comunicación alámbrica, se requiere **GND** en ambos dispositivos con conexión cruzada (**Tx1-Rx2 y Rx2-Tx1**); también es posible comunicación inalámbrica a través de diversos medios (*RC, Bluetooth, Infrarroja, WiFi*).

Figura 7-1. Comunicación asíncrona UART

El protocolo se define con bits de *datos* y bits de *control* (*inicio, paro, paridad*); el estándar consta de 1 bit de inicio, 8 bits de datos y 1 bit de paro, con lo que se define el frame (marco) del dato a transmitir o recibir.

Raspberry Pi Pico

Tiene dos puertos serie asíncrono UART, denominados UART0 y UART1; asignados como función alterna de los GPIO:

UART0					UART1	
UART0 TX	GPIO0	GPIO12	GPIO16	UART1 TX	GPIO4	GPIO8
UART0 RX	GPIO1	GPIO13	GPIO17	UART1 RX	GPIO5	GPIO9

Tabla 7-1. Distribución de puertos UART

Los recursos de software requeridos para uso del módulo UART son:

from machine import UART, Pin	#	Importar la clase UART del módulo machine		
uart = UART(Num_uart,baudrate=baud,tx=Pin(GP_Tx), rx=Pin(GP_Rx))				
	 # Creación de la instancia UART uart – Nombre del objeto Num_uart – es el número de UART a usar 0/1 Baud – Configuración de baudaje GP_Tx – GPIO a utilizar como Tx GP_Rx – GPIO a utilizar como Rx 			
uart.any()	#	Espera la recepción de datos		
dato= uart.read()	#	Asignación del dato recibido		
uart.write	#	Transmisión de datos		

2 Requerimientos 2.1. Software. *Micropython* • 2.2. Editor. Thonny • 2.3. Hardware. Raspberry Pi Pico o Raspberry Pi Pico W •

- Plataforma embebida 1 para Raspberry Pi Pico •
- Sensor de temperatura interno
- 8 Leds
- 8 Resistencias de 220 Ω •
- Módulo convertidor USB-TTL CP2102 •
- Módulo Bluetooth HC05 o HC06

- a. Convertidor USB TTL CP2102
- b. Módulo Bluetooth HC05/HC06

Figura 7-2. Módulos de comunicación serie asíncrona UART

3. Desarrollo.

Realizar las actividades solicitadas, en ellas se realizará la comunicación serie asíncrona, será empleada el formato REPL usando la interfaz por default; así como las siguientes interfaces.

Actividad 1. Escribir el siguiente programa:

```
import select
import sys
import time
import machine
poll_obj = select.poll()
poll_obj.register(sys.stdin,1)
sys.stdout.write("Esperando recepción de datos \n")
print("Teclea un caractér y luego <enter>")
while True:
    if poll_obj.poll(0):
        ch = sys.stdin.read(1)
        sys.stdout.write("Dato recibido \n")
        print("Hola UNAM")
    time.sleep(0.1)
```

Figura 7-3. Código de ejemplo; actividad 1

- a. Comentar el código.
- b. Indicar que hace.
- c. Ejecutar.
- d. Ingresar datos desde la consola de Thonny.
- e. Explicar la diferencia entre:
 - a. sys.stdout.write("Esperando recepción de datos \n").
 - b. print("Teclea un caracter y luego <enter>").

Actividad 2. Para este ejercicio, realizar los pasos siguientes:

a. Ubicar el COM de conexión de la Raspberry Pi.

Puertos (COM y LPT)
 Dispositivo serie USB (COM44)

Figura 7-4. Información del Administrador de Dispositivos

😹 PuTTY Configuration		? >	SCOM44 - PuTTY	
Category:				
Session	Basic options for your PuTTY se	ession		
Logging	Specify the destination you want to conne	ct to		
Keyboard	Serial line	Speed		
Bell	COM44	9600		
- Features	Connection type:			
Appearance	◯ SSH	et v		
Selection Colours Connection Ota Proxy SSH Serial Teinet Rlogin SUPDUP	Saved Session Saved Session Default Settings	Load Save Delete		
	Close window on exit: Always Never Only on o	clean exit		
About Help	Open	Cancel		

b. Abrir la terminal de su preferencia.

Figura 7-5. Configuración de Putty

Figura 7-6. Configuración en monitor de Arduino

c. Explicar si existe alguna diferencia en la ejecución y cuál sería el motivo.

Actividad 3. Utilizando el formato de la actividad 1, realizar un programa que reciba comandos a través del puerto serie y ejecute las acciones indicadas.

Dato recibido	Acción
'0'	GPIO25 = OFF
'1'	GPIO25 = ON

Tabla 7-2. Control; actividad 3

Actividad 4. Realizar el siguiente procedimiento:

- a. Escribir el siguiente programa.
- b. Comentar el código e indicar que hace.
- c. Conectar el módulo CP2102.
- d. Ubicar el puerto asignado.
- e. Comprobar el funcionamiento

```
from machine import Pin,UART
import time
uart = UART(0, baudrate=9600, tx=Pin(16), rx=Pin(17))
uart.init(bits=8, parity=None, stop=1)
led = Pin(25, Pin.OUT)
uart.write('Inicia Comunicacion Serie')
while True:
    if uart.any() > 0:
        data = uart.read()
        uart.write(data)
        led.toggle()
    time.sleep(1)
```

Figura 7-7. Código de ejemplo; actividad 4

Actividad 5. Siguiendo el procedimiento de la actividad No. 4; realizar un programa que ejecute las acciones indicadas.

Dato UART	Acción
'1 '	Mostrar el voltaje del Potenciómetro
'2'	Mostrar el resultado de la conversión AD de la foto-resistencia en hexadecimal.
'3'	Mostrar la temperatura del sensor TMP36 en ºC, ºF y ºK.
'4'	Reproducir la nota DO en el zumbador
' 5'	Prender y apagar 5 veces GPIO0 al GPIO7
'6'	Corrimiento a la derecha de los 8 leds GPIO0 – GPIO7
' 7'	Corrimiento a la izquierda de los 8 leds GPIO0 – GPIO7

Tabla 7-3. Tabla de control; actividad 5

Actividad 6. Conectando el módulo bluetooth, realizar un programa que ejecute las acciones indicadas en la tabla 7-4.

Dato recibido	Acción
'A'	GPIO0 = ON
'T'	GPIO1 = ON
'D'	GPIO2 =ON
(P	GPIO3 =ON
S	GPIO0:GPIO3 = OFF

Tabla 7-4.	Control;	actividad	6
------------	----------	-----------	---

Nota: Descargar la aplicación de control bluetooth de la página del Laboratorio de Microcomputadoras.

Actividad 7. Realizar un programa que controle el funcionamiento de los motores de Corriente Directa de la practica 5, por medio de la comunicación serie empleando el módulo Bluetooth.

Comando	ACCION			
Puerto Serie	MOTOR 1	MOTOR 2		
"S"	PARO	PARO		
" A "	HORARIO	HORARIO		
"T"	ANTI-HORARIO	ANTI-HORARIO		
"D"	HORARIO	ANTI-HORARIO		
"["	ANTI-HORARIO	HORARIO		

Tabla 7-5. Control UART; actividad 7

Nota: Descargar la aplicación de control bluetooth de la página del Laboratorio de Microcomputadoras.

Laboratorio de Microcomputadoras Practica No. 8 **Comunicación Serie SPI**

Objetivo. Aprender el funcionamiento de la comunicación SPI; realizar comunicación entre diferentes componentes por medio de la comunicación serie síncrona en la modalidad SPI, estudiar librerías para controlar pantallas SPI.

1 Introducción

La comunicación SPI corresponde a un formato síncrono; permite la transferencia de información entre dispositivos, pudiendo ser entre una microcomputadora o microcontrolador y uno o más periféricos; este protocolo requiere generalmente cuatro señales de control:

Figura 8-1. Comunicación serie asíncrona SPI

SPI						
MOSI	Master Output Slave Input	Transferencia de datos, iniciada por el maestro.				
MISO	Master Input Slave Output	Datos solicitados al esclavo.				
CLK	Clock	Señal de reloj que sincroniza el reconocimiento la información solicitada.				
SS	Slave Select	Selección del esclavo; por lo regular activada en bajo.				

De acuerdo al fabricante podría asignarle un nombre distinto, pero la función seguirá siendo la misma; de igual manera podría contar con más terminales para controlarlo.

Figura 8-2. Comunicación serie asíncrona SPI, un maestro y dos esclavos

SPI en Raspberry Pi Pico

Tiene dos puertos serie síncronos SPI, designados como SPI0 y SPI1; la función alterna de los GPIO queda de la siguiente manera:

SPI0				SPI1		
SPI0 RX	GPIO0	GPIO4	GPIO16	SPI1 RX	GPIO8	GPIO12
SPI0 CSn	GPIO1	GPIO5	GPIO17	SPI1 CSn	GPIO9	GPIO13
SPI0 SCK	GPIO2	GPIO6	GPIO18	SPI1 SCK	GPIO10	GPIO14
SPI0 TX	GPIO3	GPIO7	GPIO19	SPI1 TX	GPIO11	GPIO15

Tabla 8-1. Distribución de puertos SPI

A continuación se presentan los métodos y funciones disponibles para emplear el SPI; es altamente recomendable consultar la documentación oficial de Micropython para obtener mayor información. La comunidad alrededor del mundo, ha aportado librerías de dispositivos SPI, lo que ha facilitado la implementación de aplicaciones con ellos.

from machine import SPI, Pin	#	Importar la clase SPI del módulo machine			
spi = SPI (Num_spi,baudrate=baud, polarity = Conf, sck =Pin(GP_sck), mosi=Pin(GP_mosi))					
	#	Creación de la instancia SPI spi – Nombre del objeto Num_spi – Número de SPI a usar 0/1 Baud – Configuración de la tasa de transferencia Conf – Definición de la polaridad GP_sck – GPIO a utilizar como sck GP_mosi – GPIO a utilizar como mosi			
cs = Pin(GP_cs, Pin.OUT)	#	Define el pin GPIO_cs, como selector del periférico externo (esclavo)			
<pre>spi.write(datos_a_transmitir)</pre>	#	Transfiere información a un periférico externo a través del SPI			
datos_recibidos= spi.read(dat)	#	Recepción de datos del periférico externo SPI			

2 Requerimientos

2.1. Software.

Micropython
2.2. Editor.
 Thonny

2.3. Hardware.

•	Raspberry Pi Pico o Raspberry Pi Pico W
---	---

- Plataforma embebida 2 para Raspberry Pi Pico
- Sensor de temperatura interno
- Display de 8 dígitos MAX7219 SPI
- Matriz 4 segmentos MAX7219 SPI
- Display TFT ST7735 SPI

Figura 8-3. Display; comunicación SPI

3 Desarrollo

Realizar las actividades solicitadas, investigar el funcionamiento de los tres módulos utilizados en la práctica; estudiar las librerías empleadas.

Actividad 1. Escribir el siguiente programa, cerciorarse que el módulo Display de MAX7219 de 8 dígitos, se encuentre conectado en la posición correcta; investigar el funcionamiento de la librería utilizada; comentar el código.

time.sleep(1)

Figura 8-4. Código ejemplo; actividad 1

Actividad 2. Realizar el control indicado en la tabla.

Señal de control	Estado	Display de 8 dígitos
GPIO12	Activado	Inicia cuenta decimal ascendente (incremento cada 0.5 seg.)
GPIO13	Activado	Inicia cuenta decimal descendente (decremento cada 0.5 seg.)

Tabla 8-2. Señales de control; actividad 2

Actividad 3. Escribir el siguiente programa, cerciorarse que el módulo Matriz MAX7219 de 4 elementos matriciales de 8x8, se encuentre conectado en la posición correcta; investigar el funcionamiento de la librería max7219.py; comentar el código.


```
import max7219
from machine import Pin, SPI
from time import sleep
num_display = 1
spi = SPI(0, baudrate=10000000, polarity=1, phase=0, sck=Pin(2), mosi=Pin(3))
cs_pin = Pin(6, Pin.OUT)
display = max7219.Matrix8x8(spi, cs_pin, num_display)
display.fill(0)
display.text('0',0,1,1)
display.show()
sleep(3)
```

Figura 8-5. Código de ejemplo; actividad 3

Actividad 4. Usando la matriz de leds SPI, desplegar los siguientes mensajes, usar intervalos de tiempo de 2 segundos entre cada uno de ellos (puede ser texto fijo o con desplazamiento).

Figura 8-6. Actividad 4

Actividad 5. Escribir el siguiente programa, cerciorarse que el módulo Display TFT ST7735, se encuentre conectado en la posición correcta; investigar el funcionamiento de las librerías usadas; comentar el programa.


```
from ST7735 import TFT
from sysfont import sysfont
from machine import SPI, Pin
spi = SPI(0, baudrate=20000000, polarity=0, phase=0,
sck=Pin(2), mosi=Pin(3), miso=Pin(4))
tft = TFT(spi, 15, 14, 5)
tft.initg()
tft.rgb(True)
tft.rgb(True)
tft.rotation(2)
tft.fill(TFT.WHITE)
tft.text((10, 10), "MICROS", TFT.RED, sysfont, 2, nowrap=True)
tft.text((25, 30), "FI", TFT.GREEN, sysfont, 2, nowrap=True)
```

Figura 8-7. Código de ejemplo; actividad 5

Actividad 6. Realizar un programa que muestre los nombres de cada integrante de su equipo; elegir el formato que desee, así como el color para cada campo.

Figura 8-8. Despliegue propuesto; actividad 6

Actividad 7. Realizar un programa que muestre el valor del contador generado por dos entradas digitales, tal como se muestra en la tabla 8-3; el contador debe mostrarse en los tres dispositivos utilizados en esta práctica (Display TFT, Matriz 4x8x8 y el Display de 8 dígitos) al mismo tiempo.

Tabla 8-3. Acciones de control; actividad 7
Laboratorio de Microcomputadoras Practica No. 9 **Comunicación One Wire**

Objetivo. Conocer diversos protocolos de comunicación One Wire para el control de dispositivos a través de la plataforma Raspberry Pi Pico.

1 Introducción

Existe una gran variedad de dispositivos que transmiten o reciben información usando protocolos específicos, por lo regular emplean una línea de datos, en ocasiones requieren la señal de reloj, algunos módulos de uso común serán empleados en esta práctica; entre los que destacan:

a. Módulo de leds RGB

Los Neopixel son leds de tipo RGB que se controlan de forma serial; es posible emplear módulos de un solo led, 8, 16 más, pueden tener distribución lineal, circular o matricial. Los leds pueden ser activados de manera individual, el módulo contiene un chip que se encarga de las acciones de control.

Además de Vcc y GND tiene las señales DIN y DOUT que permite la conexión en cascada.

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	B7	B6	B5	B4	В3	B2	B1	B0
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Figura 9-3. Protocolo control Neopixel

b. Módulo de 4 dígitos TM1637

El TM1637 es un módulo de 4 display de 7 segmentos que utiliza comunicación serie para ser controlados. La activación la realiza con dos líneas: una de datos DIO y otra de reloj CLK; este tipo de interfaz se conoce como Two-wire. Se rige bajo un protocolo parecido al I2C, solo que no tiene dirección asociada.

Elle Señal de reloj Entrada y salida de datos GND GND VCC 3.3V – 5V

Figura 9-4. Display de 4 dígitos TM1637

Prácticas de Laboratorio de Microcomputadoras

Figura 9-5. Protocolo del Display TM1637

c. Sensor digital de temperatura DS18B20

Es un sensor de temperatura que utiliza el protocolo 1-wire para recibir comandos y atender peticiones; emplea un bit de datos DQ, es posible conectar más de un sensor por el mismo bus, es capaz de tomar temperaturas entre los rangos de -55 °C hasta 125 °C, con resolución hasta 12 bits.

Este tipo de sensores cuenta con diferentes versiones, cada uno de los sensores tendrá una dirección única de 64 bits que se ha establecido desde el fabricante; será de gran utilidad para identificar el dispositivo.

Figura 9-6. Versiones disponibles, sensor de temperatura DS18B20

d. Sensor DTH11

El DTH11 es un sensor de temperatura y humedad emplea un protocolode tipo Single Wire, este comienza cuando el microcontrolador envía una señal de inicio (start), el DHT11 se activará y transmitirá 40 bits, estos corresponden a 16 bits de humedad (RH), 16 bits de temperatura (T), seguidos de 8 bits de cheksum, una vez enviado, pasará al estado de reposo hasta recibir otra petición.

Figura 9-7. Módulo DHT11

Figura 9-8. Protocolo DHT11; imagen tomada de DHT11 Technical Data Sheet

2 Requerimientos

2.1 Software.

Micropython
2.2. Editor.
Thonny
2.3 Hardware.
 Raspberry Pi Pico o Raspberry Pi Pico W Plataforma embebida 2 para Raspberry Pi Pico Módulo leds RGB Neopixel (8) Display TM1637 Sensor de temperatura DS18B20 Sensor de temperatura y humedad DHT11
a. Barra de leds RGB <u>Neopixel</u> b. <u>Display</u> 4 dígitos 1M1637
c. Sensor de temperatura y humedad DTH11 d. Sensor de temperatura DS18B20
Figura 9-9. Módulos One/Two – Wire

3 Desarrollo

Realizar las actividades solicitadas, investigar el funcionamiento de los dispositivos empleados; estudiar las librerías importadas.

Actividad 1. Escribir, comentar e indicar el funcionamiento del siguiente programa; estudiar la librería usada.

import time
from neopixel import Neopixel

```
pixels = Neopixel(8,0,4,"GRB")
brightness = 0.1
```

```
red=(255,0,0)
black=(0,0,0)
```

while True:

```
pixels.set_pixel(0,red)
pixels.show()
time.sleep(1)
pixels.set_pixel(0,black)
pixels.show()
time.sleep(1)
```

Figura 9-10. Código de ejemplo; actividad 1

Actividad 2. Utilizando la tira de 8 leds RGB; generar el efecto mostrado en la figura 9-11, en forma secuencial con tres distintos colores.

Figura 9-11. Muestra de secuencia a generar; actividad 2

Actividad 3. Escribir, comentar e indicar el funcionamiento del siguiente programa; estudiar la librería usada.


```
import tm1637
from machine import Pin
from utime import sleep
tm=tm1637.TM1637(clk=Pin(0),dio=Pin(1))
Sec=00
Min=00
while True:
    tm.numbers(Min,Sec,colon=True)
    sleep(0.5)
    tm.numbers(Min,Sec,colon=False)
    sleep(0.5)
    Sec=Sec+1
    if Sec==60:
        Min=Min+1
        Sec=0
        if Min==60:
            Min=0
```

Figura 9-12. Código de ejemplo y esquemático; actividad 3

Actividad 4. Empleando el display TM1637; realizar un programa que muestre un contador descendente, iniciando en 20 y cuando corresponda el valor 0, active un sonido de 1 segundo de duración en el zumbador de la tarjeta (GPIO17).

Figura 9-13. Esquemático de la actividad 4

Actividad 5. Escribir, comentar e indicar el funcionamiento del siguiente programa.

```
import machine, onewire, ds18x20, time
```

```
ds_pin = machine.Pin(16)
ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))
roms = ds_sensor.scan()
print("Sensor detectado", roms)
while True:
    ds_sensor.convert_temp()
    time.sleep_ms(750)
    for rom in roms:
        print(rom)
        tempC = ds_sensor.read_temp(rom)
        print('temperatura (°C):', "{:.2f}".format(tempC))
        print()
    time.sleep(2)
```

Figura 9-14. Código de ejemplo y esquemático; actividad 4

Actividad 6. Realizar las modificaciones necesarias al programa anterior, para mostrar también la temperatura en °F.

```
bytearray(b'(\x0f\x95D\xd4\xe1<\x9a')
temperature (°C): 23.56
temperature (°F): 74.41
bytearray(b'(\x0f\x95D\xd4\xe1<\x9a')
temperature (°C): 23.56
temperature (°F): 74.41</pre>
```

Figura 9-15. Temperatura con DS18B20 en °C y °F

Nota. El identificador del sensor puede variar.

Actividad 7. Escribir, comentar e indicar el funcionamiento del siguiente programa; estudiar la librería usada.


```
import dht
from machine import Pin
import time
Sensor = dht.DHT11(Pin(21))
while True:
    Sensor.measure()
    temp = Sensor.temperature()
    hum = Sensor.humidity()
    time.sleep(2)
    print(f"Temperatura: {temp}°C Humedad: {hum}%")
```

Figura 9-16. Código de ejemplo y esquemático; actividad 5

Nota. Registrar la temperatura leída.

Actividad 8. Utilizando el sensor DTH11, modificar el programa anterior, para que indique el momento en que se ha incrementado la temperatura de referencia, en la cercanía del sensor en razón de 5 °C (*temperatura tomada de la actividad anterior*), como se indica en la tabla 9-1.

Temperatura DTH11	LED (GPIO20)	Zumbador (GPIO17)
Temp _actual ≤ <i>Temp_ref</i> + 5°C	0	0
Temp _actual > <i>Temp_ref</i> + 5°C	1	1

Tabla 9-1. Control; actividad 8

Actividad 9. Empleando los cuatro módulos usados en esta práctica, realizar un programa que controle el funcionamiento de dos semáforos con el comportamiento descrito en la *actividad 10 de la practica 3*, al cabo de cada secuencia completa, mostrar el valor de la temperatura de cada uno de los sensores en un display TM1637 distinto; tal como se muestra en la tabla.

Figura 9-16. Especificaciones y esquemático; actividad 9

Laboratorio de Microcomputadoras Practica No. 10 **Comunicación Serie Síncrona I2C**

Objetivo. Aprender la teoría y aplicación del protocolo I2C, controlar módulos de diversos tipos con comunicación I2C.

1. Introducción

El bus I2C o I²C (*Inter-Integrated Circuit*) fué desarrollado por Philips, su propósito original fue conectar un controlador de un televisor a otros periféricos. Se ha adoptado como protocolo de comunicación serial, permite transferencia de datos entre un microcontrolador y dispositivos externos. La tasa de transferencia estándar es de 100Kbps y la más alta puede alcanzar los 3.4 Mbps.

El protocolo I2C requiere de solo dos líneas:

		I2C
SDA	Serial Data Line	Línea de datos bidireccional.
SCL	Serial Clock Line	Señal de reloj o línea de sincronización.

Los dispositivos conectados a estas líneas son de tipo "*colector abierto*", por lo tanto debe de conectar resistencias de *pull-up* de 10 K Ω , así como tener tierras comunes para establecer las mismas referencias entre todos los dispositivos.

Figura 10-1. Comunicación I2C

Se puede establecer comunicación entre un maestro y un esclavo o varios esclavos, así como de tipo multi-maestro. Cada uno de los dispositivos tiene una dirección única, en general el protocolo consta de las siguientes etapas:

- 1. Señal de inicio START
- 2. Selección del dispositivo esclavo
- 3. Indica acción a realizar lectura o escritura
- 4. Respuesta del esclavo
- 5. Transferencia de datos
- 6. Señal de paro STOP

a. Transferencia de datos del maestro al esclavo

La transferencia de datos al esclavo se describe en la figura 10.2

Figura 10-2. Protocolo I2C Maestro-Esclavo

El algoritmo a para transferir información del maestro al esclavo:

Maestro envía datos a un esclavo

Figura 10-3. Algoritmo I2C.

En caso de transferir mayor información del maestro al esclavo, entonces el protocolo a seguir será:

Maestro envía varios datos a un esclavo

Figura 10-4. Protocolo I2C Maestro – Esclavo; transferencia de varios datos

b. Lectura de datos del esclavo

El protocolo para esta actividad se describe en las figuras 10-5 y 10-6.

Maestro lee un dato de un esclavo

Figura 10-5. Solicitud de datos del maestro

En situación de peticiones del maestro a un esclavo.

Maestro lee datos de un esclavo

Figura 10-6. Algoritmo para lectura de datos del maestro

c. I2C en Raspberry Pi Pico

Tiene dos puertos serie asíncrono I2C, denominados I2C0 e I2C1; asignados como función alterna de los GPIO:

			I2C0			
I2C0 SDA	GPIO0	GPIO4	GPIO8	GPIO12	GPIO16	GPIO20
I2C0 SCL	GPIO1	GPIO5	GPIO9	GPIO13	GPIO17	GPIO21

I2C1								
I2C1 SDA	GPIO2	GPIO6	GPIO10	GPIO14	GPIO18	GPIO26		
I2C1 SCL	GPIO3	GPIO7	GPIO11	GPIO15	GPIO19	GPIO27		

A continuación se presentan los métodos y funciones disponibles para emplear el I2C; es altamente recomendable consultar la documentación oficial de Micropython para obtener mayor información.

La comunidad alrededor de Micropython ha aportado librerías de dispositivos I2C, lo que ha facilitado la implementación de aplicaciones con estos; también se sugiere estudiarlas a detalle.

from machine import I2C, Pin		Importar la clase UART del módulo machine					
i2c = I2C (Num_i2c, scl=Pin(GP_s	cl), s	da=Pin(GP_sda), freq = frecuencia)					
	#	Creación de la instancia I2C i2c – Nombre del objeto Num_i2c – es el número de I2C a usar 0/1 GP_scl – Selección del pin GPIO como señal de reloj GP_sda – Selección del pin GPIO como señal de datos freq – Configuración de frecuencia					
i2c.scan()	#	Busca los dispositivos conectados al bus I2C					
i2c.start()	#	Inicia protocolo de comunicación					
i2c.stop()	#	Termina comunicación					
i2c.writeto(dir, datos)	#	Transmisión de datos al dispositivo externo indicado					
I2c. readfrom(dir,datos)	#	Lectura de datos del dispositivo externo indicado					
i2c.readfrom_mem(dir, mem,dat)	#	Lectura de datos de la dirección de memoria del dispositivo externo					
i2c.writeto_mem(dir, mem, dat)	#	Escritura de datos a la dirección de memoria del dispositivo externo					

En esta práctica se han conectado los distintos módulos al I2C0, en las terminales GPIO8 y GPIO9.

Figura 10-7. Asignación de terminales I2C

2 Requerimientos

2.1 Software.

		Micropython
2.2.	Editor.	
		Thonny
2.3.	Hardware.	
		 Raspberry Pi Pico o Raspberry Pi Pico W Plataforma embebida 2 para Raspberry Pi Pico CI I2C PCF8574 LCD I2C 16x2 Display Oled Sensor de temperatura TMP102 Sensor de temperatura y humedad AHT10 Módulo inercial IMU MPU6050

a. PCF8574

c. Display OLED SSD1306

e. Sensor de temperatura y humedad AHT10

Figura 10-8. Módulos I2C; practica 10

b. LCD 16x2 I2C

d. Sensor de temperatura TMP102

f. Acelerómetro – giroscopio MPU6050

3 Desarrollo

Realizar las actividades solicitadas; considerar los módulos ocupados en cada una de ellos, consultar la documentación oficial para obtener mayor información del funcionamiento de estos, analizar las librerías empleadas.

Actividad 1. Escribir el siguiente código, comentar; reportar que hace.

```
from machine import Pin, I2C
sda = Pin(8)
scl = Pin(9)
i2c = I2C(0, scl=scl, sda=sda)
devices = i2c.scan()
if devices:
    for d in devices:
        print(hex(d))
```

Figura 10-9. Código de prueba; actividad 1

Actividad 2. Escribir, comentar e indicar el funcionamiento del siguiente código, será empleada la comunicación serie I2C usando el circuito PCF8574; estudiar la librería empleada.

import pcf8574
from machine import I2C, Pin
import time

i2c = I2C (0,scl=Pin(9), sda=Pin(8))
pcf = pcf8574.PCF8574(i2c, 0x39)

while True:

pcf.port = 0x3F
print(pcf.port)
time.sleep(0.8)

```
pcf.port = 0x3E
print(pcf.port)
time.sleep(0.8)
```

Figura 10-10. Código de ejemplo; actividad 2

Actividad 3. Utilizando el circuito anterior, generar la secuencia mostrada en la tabla 10-1; considerar comunicación I2C.

Tabla 10-1. Control; actividad 3

Actividad 4. Escribir el siguiente código; comentar y explicar su funcionamiento; se utilizará circuito de la actividad previa.

```
import pcf8574
from machine import I2C, Pin
import time
i2c = I2C (0,scl=Pin(9), sda=Pin(8))
pcf = pcf8574.PCF8574(i2c, 0x39)
ON = 0
OFF = 1
pcf.port = 0x3F
pcf.pin (6, 1) #Entrada P6
print("iniciamos")
while True:
    if (pcf.pin(6)==0):
        pcf.pin(0,ON)
        print("Alto")
        pcf.pin (6, 1)
    else:
        pcf.pin(0,OFF)
        print("bajo")
        pcf.pin (6, 1)
```


Actividad 5. Escribir el siguiente código, comentar e indicar que hace, revisar las librerías empleadas.


```
from machine import I2C, Pin
import time
from esp8266_i2c_lcd import I2cLcd
DEFAULT_I2C_ADDR = 0x27
i2c = I2C(0,scl=Pin(9), sda=Pin(8), freq=200000)
lcd = I2cLcd(i2c, DEFAULT_I2C_ADDR, 2, 16)
lcd.putstr("UNAM!\nFI")
time.sleep(3)
lcd.clear()
lcd.move_to(3, 0)
lcd.putstr("Laboratorio")
lcd.move_to(0, 1)
lcd.move_to(0, 1)
lcd.putstr("* M I C R O S *")
time.sleep(1)
```

```
Figura 10-12. Código ejemplo; LCD I2C
```

Actividad 6. Escribir el siguiente código, comentar e indicar que hace, revisar la librería utilizada.


```
from machine import Pin, I2C
from ssd1306 import SSD1306_I2C
```

```
i2c = I2C(0, scl=Pin(9),sda=Pin(8),freq=400000)
oled = SSD1306_I2C(128,64,i2c)
```

```
devices = i2c.scan()
if devices:
    for d in devices:
        print("I2C Adress: " + hex(d))
oled.fill(0)
oled.text("Microcomputadoras",1,6,1)
```

```
oled.text("Practica I2C",3,30,1)
oled.show()
print("UNAM FI")
```

Figura 10-13. Código de prueba; actividad 6

Actividad 7. Escribir, comentar e indicar que hace el siguiente código, este usa la comunicación I2C a través del módulo TMP102 (sensor de temperatura).

Actividad 8. Escribir, comentar e indicar que hace el siguiente código, este usa la comunicación I2C a través del módulo AHT10 (sensor de temperatura y humedad); estudiar la librería empleada.

import utime
from machine import Pin, I2C
import ahtx0

```
i2c =I2C(0,sda=Pin(8),scl=Pin(9),freq=400000)
sensor = ahtx0.AHT10(i2c)
```

while True:

print("\nTemperature: %0.2f C" % sensor.temperature)
print("Humidity: %0.2f %%" % sensor.relative_humidity)
utime.sleep(5)

Figura 10-15. Código de ejemplo, actividad 8

Actividad 9. MPU6050 Acelerómetro giroscopio.

Figura 10-16. Programa de ejemplo; actividad 9

Actividad 10. Realizar un programa, que genere las acciones mostradas en la tabla 10-2.

Condición	Acción				
$-45^\circ \leq ax \leq 45^\circ$	LED (<i>GPI018</i>) = <i>OFF</i>	BUZZER (<i>GPIO17</i>) = OFF			
$-46^{\circ} \ge ax \ge 46^{\circ}$	LED (<i>GPIO18</i>) = ON	BUZZER (<i>GPI017</i>) = ON			

Tabla 10-2. Control; actividad 10

Laboratorio de Microcomputadoras Practica No. 11 **Programación de Interrupciones y Threads**

Objetivo. Entender y aplicar la programación mediante interrupciones; así como la realización de programas en los que se utilicen diferentes núcleos, optimizar la ejecución de programación en paralelo.

1 Introducción

El microcontrolador RP2040 permite la ejecución de programas en forma paralela, mediante el uso de interrupciones (*isr)* y programación de hilos (*threads*); cada una de ellas con características especiales.

I. Interrupciones

Una interrupción es la solicitud al procesador para suspender la ejecución del programa, por lo que se procederá a atender esta petición, se almacenará en la pila (*stack*) el entorno del procesador, que consta de la dirección de la instrucción que continuaba en la cola de ejecución y el contenido de los registros internos, así como del registro de banderas; el control del programa pasará a través del vector de interrupción a la rutina o función de interrupción.

Una vez que interrupción ha sido atendida el control regresará a las condiciones previas a la petición de interrupción.

Para que un procesador atienda una petición de interrupción se requiere:

- 1. Habilitar interrupciones particulares.
- 2. Habilitar interrupciones generales.
- 3. Configurar el vector de interrupción (aplica en programación en ensamblador).
- 4. Definir la rutina de interrupción.

En Micropython se proporcionan métodos encargados de configurar y atender las interrupciones.

from machine import Pin	#	Importar la clase Pin para uso de interrupciones digitales					
fuente=machine.Pin(Num_GPIO, machine.Pin.IN, machine. Pin.PULL_UP Pin. PULL_DOWN)							
	#	Declaración de las características del objeto fuente					
fuente.irq=(handler = Nombre_Funcion_isr, trigger = Evento_que_dispara_la_peticion_de_isr)							
	#	Evento_que_dispara_la_petición_de_isr Pin.IRQ_FALLING – Interrupción con flancos de bajada Pin.IRQ_RISING – Interrupción con flancos de subida Pin.IRQ_LOW_LEVEL – Interrupción en nivel bajo '0' Pin.IRQ_HIGH_LEVEL – Interrupción en nivel alto '1'					
machine.disable_irq()	#	Deshabilita interrupción					
machine.enable_irq(state)	#	Habilita interrupción					
def función_isr(pin): global var	#	Define la función de interrupción de tipo pin; de nombre función_isr; la(s) variables deben ser globales.					

Un programa que utilice control con interrupciones digitales, debe tener las configuraciones descritas previamente, identificarlas en el programa de la figura 11-1.

import machine

SW1 = machine.Pin (Num_GPIO, machine.Pin.IN, machine.Pin.PULL_DOWN) #Define instancia SW1

```
def funcion_isr (pin): # Función de Interrupción
    global VARIABLE #Declarar variable de control de tipo GLOBAL
```

SW1.irq (trigger = machine.Pin.IRQ_RISING, handler = funcion_isr) #Configura interrupción

while True:

Programa principal

Figura 11-1. Plantilla de programa con interrupciones en Micropython

II. Programación por Hilos

Raspberry Pi Pico dispone de dos núcleos (*Cores*), regularmente todas las aplicaciones son ejecutadas en un solo núcleo; habilitar los dos núcleos nos permitirá ejecutar dos procesos al mismo tiempo ejecutándose en forma paralela, a este tipo de procesamiento se le conoce como programación por hilos (thread).

En Micropython se requiere agregar la librería para manejo de hilos, incluir la función que correrá en el segundo núcleo e invocar la ejecución en el hilo principal. En ocasiones se requiere sincronizar el funcionamiento de los dos núcleos por lo que se crea un control por semáforos. Los semáforos son objetos que permiten detener la ejecución del programa hasta que el semáforo es liberado, permitiendo un control en ejecuciones multihilo.

import _thread	#	Importa la librería _thread para utilizar procesamiento de hilos
_thread.start_new_thread(nom_fu	nción <u></u>	_del_2º_hilo, (argumentos))
	#	Nom_funcion_del_2º_hilo – Corresponde al nombre dado Argumentos – en caso de requerir si no iría vacio
<pre>sincro=_thread.allocate_look()</pre>	#	Creación del semáforo de bloqueo para sincronizar
sincro.acquire()	#	Adquisición del bloqueo del semáforo
sincro.release()	#	Libera el bloqueo del semáforo.

2 Requerimientos

- 2.1. Software.
- Micropython
- 2.2. Editor.
- Thonny

2.3. Hardware.

Raspberry Pi Pico o Raspberry Pi Pico W
Plataforma embebida 2 para Raspberry Pi Pico
Barra leds RGB Neopixel
2 Displays TM1637
2 Push button
Leds

3 Desarrollo

Realizar las actividades solicitadas; investigar el funcionamiento de las interrupciones y la programación de hilos, para detallar sus características de uso.

Actividad 1. Escribir el siguiente código, comentar, indicar que hace y explicar su funcionamiento.

```
from machine import Pin
import utime
S1 = Pin(12,Pin.IN, Pin.PULL_UP)
def FuncISR_S1(pin):
    print("Interrupción detectada")
    utime.sleep(1)
S1.irq(trigger =Pin.IRQ_FALLING, handler=FuncISR_S1)
print("! ... Esperando Interrupción !")
while True:
    pass
    Figura 11-2. Código de ejemplo; actividad 1
```

Actividad 2. Realizar las modificaciones necesarias al programa de la actividad 1, de manera que, al reconocer la interrupción, provocada por un flanco de bajada ocurrida en S1 (GPIO12); el programa principal genere una señal cuadrada con frecuencia de 1 Hz cada que sea detectada y sea visible en la terminal GPIO20.

Tabla 11-1. Control; actividad 2

Actividad 3. Realizar un programa en el que se activen dos interrupciones, controladas por las entradas S1 y S2; en el momento de alguna de estas interrupciones sea requerida, genere las acciones solicitadas en la tabla 11-2.

E	vento	Acciones					
S1 (GPIO12)	Pulso de bajada	LED ON (GPIO18)	TM1637 (GP0) Cuenta Interrupciones S1				
S2 (GPIO13)	Pulso de bajada	LED ON (GPIO19)	TM1637 (GP10) Cuenta Interrupciones S2				

Tabla 11-2.	Control;	actividad	3
-------------	----------	-----------	---

Actividad 4. Escribir el siguiente código, comentar, indicar que hace y explicar su funcionamiento.

```
from machine import Pin
import utime
import _thread
led1 = Pin(18, Pin.OUT)
led2 = Pin(20, Pin.OUT)
def led2_thread():
    while True:
        print("Este es un mensaje del segundo nucleo")
        led2.toggle()
        utime.sleep(0.2)
_thread.start_new_thread(led2_thread, ())
while True:
        led1.toggle()
        utime.sleep(0.25)
```

Actividad 5. Realizar un programa, que sea controlado con interrupciones, serán activadas cada que se detecten flancos de bajada en S1 y S2; cuando sean reconocidas generar las acciones solicitadas en la tabla 11-4; considerar que estas serán ejecutadas en diferentes núcleos.

Eve	ento		Acción	
Interrupción	Hilo (Thread)	LED	Estado	Hilo (Thread)
S1	1	GPIO18	Toggle	1
S 2	1	GPIO19	Toggle	2

Tabla 11-4. Acciones de control; actividad 5

Figura 11-3. Código de ejemplo; actividad 4

Actividad 6. Realizar un programa que controle el flujo de automóviles y permita el paso de los peatones en un semáforo de CU en la UNAM. Para las luces del semáforo se empleará la barra de leds RGB Neopixel; de acuerdo a lo siguiente:

	Automóviles			Peatón	
LED1	LED2	LED3	LED4	LED5	LED6
ROJO	AMARILLO	VERDE	ROJO	AMARILLO	VERDE

Características de diseño.

- a. Funcionamiento normal para flujo de automóviles; se controla con un núcleo.
- b. El peatón cuenta con un botón de cada lado de la avenida (petición de paso); cuando exista la solicitud de paso del peatón, se activará una interrupción para avisar al primer núcleo que hay una solicitud de paso.
- c. Una vez que el semáforo está en rojo, cederá el paso al peatón durante 10 segundos.
- d. La rutina del paso anterior (semáforo del peatón), se ejecutará en el segundo núcleo.
- e. El tiempo para paso de peatón será mostrada en el display TM1637 y hará sonar un zumbador.

Figura 11-5. Circuito; actividad 6

Laboratorio de Microcomputadoras Practica No. 12 **Uso y aplicaciones de WiFi**

Objetivo. Introducir al estudiante en el control de sistemas empleando la comunicación WiFi, para la realización de aplicaciones de tipo IOT.

1 Introducción

Las versiones Raspberry Pi Pico W y Raspberry Pi Pico 2W contienen un módulo WiFi de 2.4 GHz con protocolo 802.11n, lo que permite conectarse a internet y adentrarse al mundo IOT.

Es posible implementar alguno de los tipos de funcionamiento permitidos, con las características que demanda cada una de ellas, como:

- B. Modo Estación o STA (Station).
 - a. Modo Estación

b. Modo Access Point

WI-FI ACCESS POINT

Figura 12-1. Modos de trabajo WiFi; Raspberry Pi Pico W

Los recursos de software requeridos para uso del módulo UART son:

ROUTER

A. Modo Punto de Acceso o AP (Access Point).

import network	#	Importar la librería network; proporciona herramientas de conexión y configuración.
Import sockets	#	Importar la librería sockets

2 Requerimientos

2.1. Software.	
	Micropython
2.2. Editor.	
	• Thonny
2.3. Hardware.	
	 Raspberry Pi Pico W Plataforma embebida 1 o 2 para Raspberry Pi Pico 2 Push button Leds Interruptores Potenciómetro

3 Desarrollo

Realizar las actividades solicitadas; es altamente recomendable haber capturado los programas como actividad previa a la sesión.

Actividad 1. Escribir el siguiente código; con ayuda de la documentación oficial comentar que hace cada línea e indicar que hace; Reportar mediante captura de pantalla la ejecución del mismo.

```
import network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
networks = wlan.scan()
print("Redes cercanas:")
for network_info in networks:
    print(network_info)
    Figura 12-2. Código; actividad 1
```

Actividad 2. Para el siguiente código, identificar los parámetros faltantes. Complementar con los datos indicados, escribir el código; con ayuda de la documentación oficial comentar que hace cada línea, e indicar que hace el programa; reportar mediante captura de pantalla la ejecución del mismo.

```
import network
from time import sleep
ssid = 'RED WIFI'
password = 'CONTRASEÑA'
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)
connection timeout = 10
while connection_timeout > 0:
    if wlan.status() >= 3:
        break
    connection timeout -= 1
    print('Espera conexión WIFI...')
    sleep(1)
if wlan.status() != 3:
    raise RuntimeError('Error en conexión')
else:
    print('Conexión establecida')
    network info = wlan.ifconfig()
    print('IP address:', network_info[0])
```

Figura 12-3. Código; actividad 2

Actividad 3. Escribir el siguiente código (pagina HTLM), ejecutar y dar el formato de su preferencia, incluir el o los nombres de los integrantes de su equipo.

```
<html>
<head>
<title>Control de un LED GPIO 2...</title>
</head>
<body>
<h1>Control de LEDs</h1>
<a href="/?led1=on"><button>LED 1 ON</button></a>
<a href="/?led1=off"><button>LED 1 OFF</button></a>
</body>
</html>
```


Actividad 4. Escribir el siguiente programa, incrustando las modificaciones realizadas en la actividad anterior, comentar el código y comprobar su funcionamiento.

```
import network
import socket
import machine
import time
led1 = machine.Pin(2, machine.Pin.OUT)
ssid = 'RED WIFI'
password = 'Contraseña WIFI'
wlan = network.WLAN(network.STA IF)
wlan.active(True)
wlan.connect(ssid, password)
print("Conectando a Wi-Fi...")
while not wlan.isconnected():
    time.sleep(1)
    print(".", end="")
print("\nConectado a Wi-Fi!")
print("Dirección IP:", wlan.ifconfig()[0])
def web_page():
   html = """
   <html>
   <head>
       <title>Control de un LED GPIO 2...</title>
   </head>
   <body>
       <h1>Control de LEDs</h1>
       <a href="/?led1=on"><button>LED 1 ON</button></a>
          <a href="/?led1=off"><button>LED 1 OFF</button></a>
   </body>
   </html>
    .....
   return html
```

```
addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]
s = socket.socket()
s.bind(addr)
s.listen(5)
print("Servidor web escuchando en", addr)
while True:
    cl, addr = s.accept()
    print('Conexión de', addr)
    request = cl.recv(1024)
    request = str(request)
    if "/?led1=on" in request:
        led1.value(1)
    if "/?led1=off" in request:
        led1.value(0)
    response = web page()
    cl.send('HTTP/1.1 200 OK\n')
    cl.send('Content-Type: text/html\n')
    cl.send('Connection: close\n\n')
    cl.sendall(response)
    cl.close()
```

Figura 12-4 Código actividad 4

Actividad 5. Realizar el control (Web Server) de 4 salidas GPIO (0, 1, 2 y 3), de manera que contenga cuatro botones de apagado y encendido de estas señales; la página Web queda a criterio del estudiante.

Actividad 6. Realizar un control (Web Server), de manera que controle, el funcionamiento de 4 GPIO como salida, 2 entrada digitales, 1 entrada analógica y se permita controlar la salida PWM; elegir los recursos que sean pertinentes en cada caso, para ver el funcionamiento de esta aplicación.

Referencias

https://thonny.org/

https://www.raspberrypi.com/

https://micropython.org/

https://cpulator.01xz.net/

https://www.raspberrypi.com/documentation/

https://developer.arm.com/documentation